ITTA' di PESCARA

OGGETTO

PE210021 - MESSA IN SICUREZZA PERMANENTE DELL'EX DISCARICA RSU FOSSO GRANDE

Ente	COMUNE DI PESCARA
Dirigente Responsabile del Settore	arch. Emilia FINO
Responsabile Unico del Procedimento	geol. Edgardo SCURTI
Tecnico Incaricato della progettazione	ing. Giovanna BRANDELLI
Geologia	geol. Andrea TATANGELO
Gruppo di lavoro interno	costituito con Disposizione Dirigenziale prot. n. 86961 del 18-05-2021
Titolo elaborato	AGGIORNAMENTO ANALISI DI RISCHIO SANITARIO-AMBIENTALE EX DISCARICA COMUNALE FOSSO GRANDE PE210021 – DOCUMENTO ELABORATO SUI DATI DI MONITORAGGIO 2020 – E PROPOSTA ATTIVITÀ PROPEDEUTICHE ALLA PROGETTAZIONE DEGLI INTERVENTI DI RISANAMENTO DEFINITIVI Report adeguato alla Conferenza dei Servizi decisoria dei 12 ottobre 2021
Data	Marzo 2022

CITTA' DI PESCARA Piazza Italia, 1 - 65100 PESCARA ITALIA CITTA' DI PESCARA - REGIONE ABRUZZO - I - UE COLITE

Riproduzione vietata, tutti i diritti riservati. Nessuna purte del presente documento può essere riprodotta a diffuso can un nezzo qualsiosi.

1. PREMESSA	4
2. STORIA DEL SITO DI DISCARICA	4
3. INFORMAZIONI SUL SITO	9
3.1 INQUADRAMENTO GENERALE	9
3.2 INQUADRAMENTO URBANISTICO	10
3.3 Inquadramento geologico e geomorfologico	10
4. RISULTATI DELLA CARATTERIZZAZIONE E MODELLO CONCETTUALE DEL SITO	13
4.1 Stratigrafia di dettaglio	13
4.2 IDROGEOLOGIA DEL SITO	
4.3 QUALITÀ DEI TERRENI	
4.4 QUALITÀ DELLE ACQUE SOTTERRANEE	20
4.5 CARATTERISTICHE DEL PERCOLATO/RIFIUTI LIQUIDI PRELEVATI NEI MANUFATTI DI CONTENIMENTO	23
5. SORGENTI DI CONTAMINAZIONE INDIVIDUATE	24
5.1 SORGENTE PRIMARIA	24
5.2 SORGENTI SECONDARIE	26
5-3 PERCORSI DI MIGRAZIONE/ESPOSIZIONE	26
5.4 POTENZIALI BERSAGLI	26
5.5 RIFERIMENTI BIBLIOGRAFICI E METODOLOGIA ADOTTATA PER L'ANALISI DI RISCHIO	
5.5.1 Assunzioni generali	
5.5.2 Criteri di accettabilità del rischio e riferimenti normativi	28
6. ANALISI DI RISCHIO SANITARIO AMBIENTALE - APPLICAZIONE AL CASO IN ESAME	28
6.1 DATI SITO SPECIFICI PER L'ANALISI DI RISCHIO	29
7. RISULTATI DELL'ANALISI DI RISCHIO - LIVELLO 2 AREA S9 ZONA A	31
8. RISULTATI DELL'ANALISI DI RISCHIO AREA B	35
9. INTERVENTO DI MESSA IN SICUREZZA EFFETTUATO IN SITO	40
10. CONCLUSIONI CON INDICAZIONE DELLE ATTIVITA' PROPOSTE AI FINI DELLA PROGETTAZIONE DEGL INTERVENTI DI BONIFICA/MESSA IN SICUREZZA DEFINITIVI	
1. REPORT DI INDAGINE TECHNOSOIL 2. RICOSTRUZIONE PIEZOMETRIA FEBBRAIO 2020 3.	

1. REPORT DI INDAGINE TECHNOSOIL 2. RICOSTRUZIONE PIEZOMETRIA FEBBRAIO 2020 3. RICOSTRUZIONE PIEZOMETRIA MARZO 2020 4. RAPPORTI DI PROVA TERRENI 5. RAPPORTI DI PROVA ACQUE SOTTERRANEE – CARATTERIZZAZIONE INTEGRATIVA MADEP 6. RAPPORTI DI PROVA RIFIUTI LIQUIDI (ACQUE DI SPURGO E PERCOLATO) 7. PLANIMETRIE COLLAUDO BONIFICA 1999-2000 8. VERBALE ARTA 9. FORMULARI SMALTIMENTO DICEMBRE 2020 10. REPORT RISKNET SORGENTE S9 rev 1 (AREA A) 11. REPORT RISKNET rev 1 (AREA B)

1. PREMESSA

Il presente documento costituisce il rapporto di aggiornamento dell'Analisi di Rischio sanitario-ambientale della Ex Discarica Comunale RSU "Fosso Grande", ubicata in via Prati nel Comune di Pescara (PE) adeguato alle prescrizioni dettate da ARTA in sede di Conferenza dei servizi del 12.10.2021.

Le prescrizioni sono riferibili in parte all'esecuzione del piano di monitoraggio e in parte al calcolo del rischio sanitario.

prescrizioni sul monitoraggio:

- 1. prima dell'esecuzione di interventi di MISE/MIPRE deve essere ripetuta una campagna di indagine sulle acque sotterranee e biogas
- 2. il parametro zinco, di cui ARTA ha rilevato superamento nel terreno porfondo saturo, deve essere mantenuto nel set del monitoraggio analitico delle acque sotterranee
- 3. sul lato meridionale della discarica vanno realizzati ulteriori due piezometri di monitoraggio, con ubicazione da verificare con ARTA
- 4. deve essere installato un adeguato numero di sonde di soilgas in prossimità delle abitazioni per verificare l'eventuale migrazione di vapori all'esterno del sito e l'intrusione indoor come da LG SNPA 15/18 e 17/18

prescrizioni sul calcolo del rischio sanitario:

- il POC della sorgente S9 deve essere posto in corrispondenza della discontinuità geologica del Fosso Valle
 Furci, in corrispodenza del piezometro s10
- 2. nel calcolo del rischio sanitario per esposizione da sostanze volatili indoor/outdoor off site vanno inserite le distanze reali dei recettori e i tempi di esposizione, con verifica delle effettive destinazioni d'uso dei fabbricati.
- 3. Vanno verificati i dati ARTA conseguiti sulle matrici indagati nell'indagine preliminare

La presente relazione aggiorna quindi

- 1. La valutazione del rischio
- 2. Il piano di monitoraggio nelle more di esecuzione del piano operativo di bonifica.

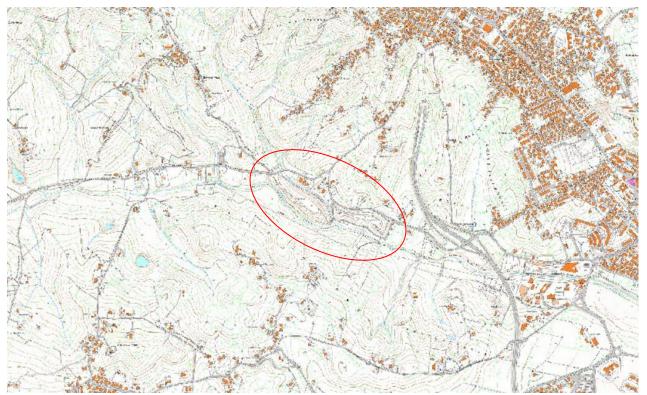


Fig. 1: Ubicazione ex discarica (CTR, Regione Abruzzo)

2. STORIA DEL SITO DI DISCARICA

L'ex Discarica Comunale RSU sulla sinistra idrografica del Fosso Grande è censita nell'anagrafe regionale delle discariche con scheda ARTA PE 210021. Si riportano elementi rilevanti per l'inquadramento storico e tecnico delle passività ambientali connesse al sito accessibili on line al link http://ambiente.comune.pescara.it/?page_id=860:

- l'area di discarica, localizzata lungo la parte terminale del Fosso Grande, risulta essere stata utilizzata nel periodo che va dal 1970 al 1991 per lo smaltimento di rifiuti urbani del Comune di Pescara;
- la discarica è stata realizzata in rilevato e risulta costituita da due grossi accumuli separati dal Fosso Valle
 Furci, affluente sinistro del Fosso Grande; l'abbanco più vecchio è quello posto a W-NW, mentre la parte
 orientale è il risultato di un ampliamento che risale con ogni probabilità alla fine degli anni '80;
- dal 1970 e fino a parte del 1987 giuridicamente la discarica risulta "incontrollata"
- l'autorizzazione regionale DGR 5 3 del 9/09/87 autorizzava l'ampliamento della discarica ai sensi del
 DPR 915/82 e della Delibera Interministeriale del 27/04/84, subordinandone l'esercizio ad una serie di prescrizioni/condizioni, tra cui la bonifica della discarica esistente;

a partire dal 1998 e negli anni successivi sono stati realizzati una serie di interventi per il contenimento delle scarpate, per l'impermeabilizzazione dei cumuli di rifiuti, la piantumazione di alberi e la realizzazione di strade di

accesso; risulta anche la realizzazione di sistemi di drenaggio per la raccolta del percolato e di pozzi drenanti all'interno della massa dei rifiuti per la captazione del biogas. Risale al 1999 una tavola di collaudo, in cui si verificano le misure di progetto e di campo dell'allestimento dei presidi di contenimento e gestione delle emissioni da discarica: il percolato, da quanto si può evincere nella planimetria richiamata e riportata nella figura a seguire, verrebbe drenato in due tratti, sezione A-A per il vecchio corpo di discarica e sezione B-B per il corpo più recente. Dal particolare delle opere di regimazione e smaltimento sembrerebbe che il percolato venga intercettato, regimato raccolto localmente in manufatti interrati (vasche di raccolta del liquame), di cui però non si rintracciano né le specifiche né le certificazioni attestanti la verifica di tenuta. Per quanto riguarda il biogas esso verrebbe estratto e convogliato a due torce, non più attive, posizionate su ciascuno dei due abbanchi. I tratti in rosso individuano le linee di raccolta "liquami": non sono perimetrali e recapitano in vasche interrate. In relazione al sistema di drenaggio del percolato, il particolare delle "opere fognarie per lo smaltimento del percolato" riferisce anche la composizione del pacchetto di copertura e il dettaglio della tubazione; la planimetria riporta due manufatti di raccolta: uno a valle del primo settore e uno a valle del secondo settore. A valle del primo settore si rintraccia l'indicazione di una briglia di raccordo fra il sistema di raccolta del primo settore in attraversamento del Fosso.

Fig. 2: Riproduzione tavola di progetto BONIFICA E RINATURAZIONE DELLA DISCARICA FOSSO GRANDE – 1999 (nei riquadri in verde sono evidenziate opere di contenimento "liquami")

Fig. 3: Riproduzione tavola di progetto BONIFICA E RINATURAZIONE DELLA DISCARICA FOSSO GRANDE - 1999 particolare

Il progetto di adeguamento secondo lotto parla di un sistema di drenaggio del percolato perimetrale.

- Nel 2007 è stata effettuata una indagine preliminare / precaratterizzazione, che ha visto la realizzazione di 5 sondaggi, da cui sono emersi superamenti nelle acque sotterranee, correlati alla migrazione di percolato.
- Con atto regionale D.D. n. DN₃/28₃ del 14.10.08 è stato approvato il Piano di Caratterizzazione denominato "Caratterizzazione ambientale su sito della ex discarica comunale di Fosso grande, via Prati" a firma del Dott. Geol. Francesco Martino.
- Nel 2009 viene effettuata la caratterizzazione in contraddittorio con ARTA, da cui emergono superamenti esclusivamente a carico delle acque sotterranee ed esattamente in monte idraulico per Arsenico e ferro e in valle per manganese, nichel, nitriti, nitrati, solfati e solventi clorurati.
- Con determinazione DR4/48 del 20.04.2011, emessa dal Servizio Gestione Rifiuti della Regione Abruzzo sono stati approvati i risultati del Piano di Caratterizzazione e dell'Analisi di Rischio sanitario e ambientale sito-specifica: il documento attestava la sussistenza del solo rischio ambientale per le acque sotterranee; nel medesimo atto veniva stabilito che il Comune avrebbe dovuto predisporre il progetto operativo di bonifica/messa in sicurezza.

- A dicembre 2016 il Comune di Pescara effettua uno studio di fattibilità tecnica per la Messa in sicurezza permanente della ex discarica RSU "Fosso Grande", che tuttavia subordina la definizione degli interventi di MISP ad un aggiornamento dei dati di contaminazione delle acque sotterranee e dell'Analisi di Rischio, visto il lasso di tempo trascorso, e soprattutto a valle del nuovo database dell'Istituto Superiore di Sanità e della variazione delle metodiche di determinazione dei metalli sulle acque, rispetto al 2009, in relazione alla fase dell'acidificazione in campo.
- Con Verbale di deliberazione della Giunta Comunale di Pescara n. 56 del 31.01.2017 viene approvato il Progetto/Studio di fattibilità tecnico economica di "Messa in sicurezza permanente ex discarica RSU di Fosso grande".
- con Atto Dirigenziale n. 1/GE del 28.12.2017 del Comune di Pescara è stato deciso di affidare a un consulente tecnico esterno, l'Ing. G. Brandelli, l'incarico di progettista per la progettazione preliminare e definitiva della Messa in sicurezza permanente della ex discarica di Fosso Grande e di coordinatrice del gruppo di lavoro/progettazione interno. L'incarico viene formalizzato a Maggio 20 8. Con nota del Comune di Pescara prot. 86961 del 18.05.2021 è stato aggiornato il gruppo di lavoro interno con indicazione dei nominativi e delle relative competenze.
- Dopo una serie di accessi in sito e di ispezioni sulla funzionalità e campionabilità dei punti di monitoraggio esistenti, tra il 12.02.2020 e il 05.03.2020 è stata eseguita una campagna di monitoraggio, come forma di messa in sicurezza e misura di prevenzione ambientale, finalizzata alla valutazione dello stato attuale di qualità ambientale (i precedenti dati risalgono al 2009) e all'Aggiornamento dell'Analisi di rischio, nonchè al ripristino dei piezometri esistenti. Nello specifico sono stati eseguiti n. 6 sondaggi geognostici dalla ditta incaricata Technosoil, con contestuale campionamento e determinazioni analitiche di terreni ed acque sotterranee, svolti da parte dei tecnici della GreenLab. Le attività di prelievo dei terreni hanno previsto il contradditorio con ARTA Abruzzo, Distretto Provinciale di Chieti (cfr verbale allegato). Inoltre sono stati prelevati ed analizzati n. 5 campioni di rifiuto liquido dai manufatti interrati, adibiti alla raccolta delle acque di corrivazione e percolato, posti lungo il tratto perimetrale meridionale del secondo corpo di discarica. Per i dettagli si rimanda al capitolo 4.

Fig. 4: Ubicazione sondaggi realizzati nel corso del monitoraggio 2020

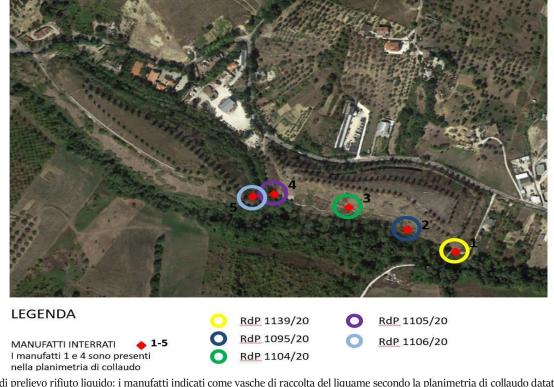


Fig. 5: punti di prelievo rifiuto liquido: i manufatti indicati come vasche di raccolta del liquame secondo la planimetria di collaudo datata 1999 (cfr Fig. 2) sono i punti identificati con RP 1139/20 e 1105/20.

3. INFORMAZIONI SUL SITO

3.1 Inquadramento generale

Il sito è localizzato in prossimità della strada comunale Prati nella parte NW del territorio comunale di Pescara, ai confini con il Comune di Spoltore verso Ovest e con quello di Montesilvano verso Nord. L'area della ex discarica è estesa per circa 10 ettari, per un volume di rifiuto smaltito poco inferiore ai 700.000 mc ed è costituita da due abbanchi di rifiuti separati e realizzati in rilevato, senza esclusione di punti di tombamento. I due grossi rilevati sono separati dal Fosso Valle Furci, affluente in sinistra idrografica del Fosso Grande, che confluisce nel Fosso Grande nel tratto compreso tra i due rilevati. Il corpo discarica più vecchio è ubicato nella zona più occidentale dell'area e risulta delimitato verso Sud dal Fosso Grande e verso Nord dal Fosso Valle Furci, che a sua volta delimita il corpo discarica più vecchio da quello più recente, posto nel settore orientale. I due fossi rappresentano delle importanti linee di drenaggio delle acque superficiali e, per la loro ubicazione, presentano criticità in quanto potenziali recettori dell'eventuale percolato che dovesse fuoriuscire in maniera non controllata dalla discarica. Intorno al sito di discarica insistono diverse abitazioni civili. La zona residenziale principale più vicina si sviluppa subito a Nord in prossimità di via Prati a pochi metri dalla discarica. Gruppi di case sono presenti anche nel settore orientale della discarica, a valle idrogeologico, mentre nel settore meridionale sono presenti per lo più aree ad uso agricolo.

Fig. 6: Ubicazione ex discarica.

3.2 Inquadramento urbanistico

L'area di discarica risulta inquadrata nel PRG del Comune di Pescara come <u>Verde pubblico attrezzato F2</u>. Ai fini del confronto con le concentrazioni soglia di contaminazione (CSC) previste nel D.Lgs. 152/06 e s.m.i., si considerano i limiti di concentrazione soglia, indicati nella colonna A, Tab. dell'Allegato 5 del D.Lgs. 152/06.

3.3 Inquadramento geologico e geomorfologico

L'area ricade, per quanto riguarda il contesto geologico strutturale, nel settore abruzzese dell'avanfossa adriatica (bacino di Pescara), in prossimità della linea di costa. I terreni presenti nell'area di interesse appartengono, in generale, ai termini di età Pliocenica e Pleistocenica della suddetta avanfossa e sono costituiti da una sequenza deposizionale silico - clastica terrigena e sabbiosa, potente fino a 3.000 m, cui segue, a colmamento del settore centrale dell'avanfossa periadriatica, una successione di depositi grossolani in facies di spiaggia sommersa, di spiaggia, di conoide e/o di laguna costiera (Crescenti, 1971; Casnedi et alii, 1981; Ghisetti & Vezzani, 1983). I sedimenti della sequenza deposizionale Plio-pleistocenica si sono deposti, dunque, in un'area a forte subsidenza, il bacino di Pescara, il cui asse risulta orientato in direzione NW-SE. L'area indagata si localizza nella parte terminale della piana del Fiume Pescara, sulla sinistra idrografica, in corrispondenza di uno degli affluenti di sinistra, il Fosso Grande che borda l'intera zona di discarica nel settore meridionale. Il fondo vallivo del Fiume Pescara è caratterizzato da sedimenti alluvionali recenti e da depositi alluvionali terrazzati del Pleistocene; questi ultimi hanno maggiore potenza verso Nord-Ovest rispetto alla destra idrografica. La coltre alluvionale recente che colma il fondo vallivo del Pescara è costituita prevalentemente da depositi fini o medio fini, con abbondanti eventi torbosi, argillosi plastici e soffici, a tratti molto compressibili; non mancano lenti e livelli anche di una certa potenza di ghiaie e ciottoli a matrice sabbiosa; questi ultimi si rinvengono soprattutto al letto delle alluvioni.

Il substrato del materasso alluvionale è rappresentato da argille grigie siltose del Calabriano (Pleistocene).

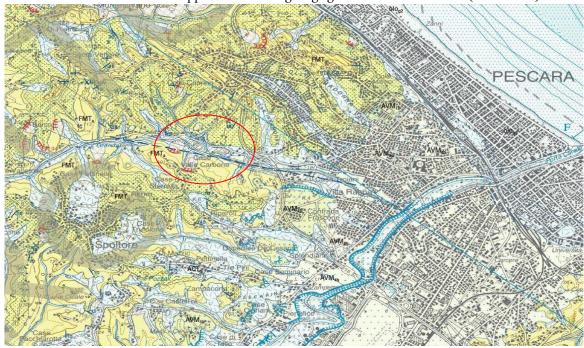


Fig.~7:~Stralcio~del~Foglio~351~(Pescara)~-~Carta~Geologica~D'Italia~(scala~1:50.000)~con~ubicazione~area~di~studio.

In dettaglio l'area di discarica è ubicata sui depositi alluvionali costituiti da livelli di limi e argille talora sabbiose con spessori variabili. Al di sotto di questi ultimi si rinvengono i depositi limo argillosi del Calabriano inferiore. Dal punto di vista morfologico, la zona di studio risulta fortemente modificata rispetto all'assetto originario. Infatti i due rilevati hanno mascherato le forme naturali prima ivi presenti, andando a coprire un terrazzo fluviale. Tuttavia tali forme originarie mascherate dai rifiuti abbancati e dall'intensa urbanizzazione, costituiscono un elemento importante per valutare l'assetto geomorfologico e idrogeologico dell'area di studio. Da una analisi più dettagliata, nell'area di studio è possibile riconoscere forme di incisioni di tipo erosiva nei fossi presenti, una piccola conoide (non censita dal PAI, in corrispondenza della foce del Fosso Ferzetti su cui sorgono alcuni edifici subito a Nord della discarica ed aree in dissesto in prossimità della discarica stessa lungo il versante che scende verso il Fosso Grande.

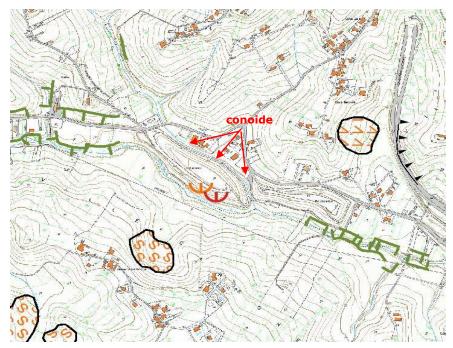


Fig 8: Stralcio della Carta Geomorfologica del PAI.

I prospetti stratigrafici derivanti dai sondaggi realizzati in fase preliminare, di caratterizzazione (2009) e di monitoraggio (2020) hanno permesso di ricostruire l'assetto del sottosuolo del sito fino a una profondità massima di 15 metri dal piano campagna, che può sintetizzarsi come segue:

- Orizzonte A, con spessori generalmente variabili tra 1,5 m e 7,0 m, costituito da terreno agrario, terreno di riporto e rifiuto;
- Orizzonte B, con spessori generalmente variabili tra 2,0 m e 15,0 m, rappresentato da alternanze di limi argillosi
 e sabbiosi, sabbie limose e sabbie ghiaiose sciolte;

Orizzonte C, localmente individuabile a partire da -5,0 m./- 6,5 m dal piano campagna, costituito da limi argillosi
 e argille siltose che rappresentano il substrato dei depositi alluvionali.

L'area in esame, idrogeologicamente, ricade in prossimità dell'acquifero di subalveo del Fiume Pescara. La distribuzione dei litotipi in tale acquifero è molto variabile, così come gli spessori dei depositi alluvionali che passano da 12-16 m nella zona di Manoppello Scalo, a 20-30 m a Chieti Scalo, a 35-40 m a Sambuceto e sui 40-50 m a Pescara. Da monte verso valle si individuano principalmente due zone idrogeologicamente diverse:

- nella parte compresa tra Manoppello Scalo e Brecciarola predominano i corpi ghiaiosi in cui sono intercalati lenti di sabbie e limi;
- nella parte compresa tra Chieti Scalo e la foce predominano i depositi limosi, limo-sabbiosi e limoargillosi con intercalazioni di depositi argillosi, sabbiosi.

I limi, alla base, sono delimitati da ghiaie con spessore anche notevole che, a loro volta, poggiano con continuità sul substrato argilloso plio-pleistocenico. In particolare, quindi, l'area di studio è caratterizzata da terreni a differente permeabilità idraulica, il cui assetto strutturale e giaciturale determina la sovrapposizione dei membri più permeabili della successione, limi sabbiosi e sabbie, su quello a bassa permeabilità, costituito dalle argille con torba, che svolge pertanto il ruolo di acquiclude locale. Nell'area di studio compresa tra Spoltore e Pescara si nota chiaramente che la falda alimenta il fiume.

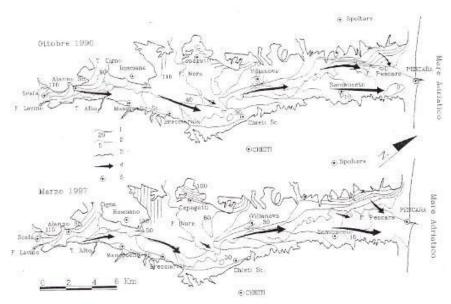


Fig. 9: Carta piezometrica (Desiderio et alii, 2001)

L'assetto idrogeologico del sito ospitante la ex discarica comunale in oggetto è descritto al paragrafo 4,2 al quale si rimanda per i relativi dettagli.

4. RISULTATI DELLA CARATTERIZZAZIONE E MODELLO CONCETTUALE DEL SITO

4.1 Stratigrafia di dettaglio

La ricostruzione dell'assetto stratigrafico del sito in esame effettuata nel 2009 è supportata dalle sezioni grafiche del corpo di discarica, in cui si riconosce la seguente successione:

- STRATO DI ABBANCO: la matrice è decritta come "riporto/rifiuto", è composta da terreno agrario, terreno di riporto con inclusione di ciottoli, elementi antropici e rifiuto; lo spessore dell'abbanco è variabile tra 1,5 m e 7,0 m, dal momento che la discarica è in rilevato.
- ALTERNANZA DI LIMI SABBIOSI ED ARGILLOSI intervalli di limi argillosi e sabbiosi, sabbie limose e sabbie ghiaiose sciolte (spessore variabile tra 2,0 m e 12,0 m);
- LIMI ARGILLOSI limi argillosi e argille siltose di base dei depositi alluvionali intercettati solo localmente e a
 partire da 5,0 m/-6,5 m. dal p.c.

Si evidenzia come la base del materiale di riporto è in contatto con la falda acquifera superficiale rinvenibile all'interno dei sottostanti terreni limoso sabbioso argillosi.

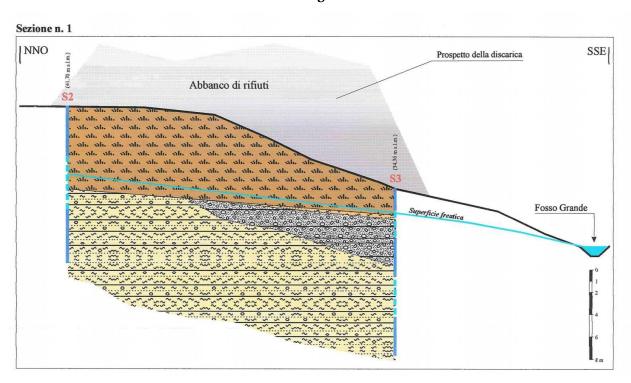


Fig. 10 -sezione stratigrafica estratta dal report di caratterizzazione 2009

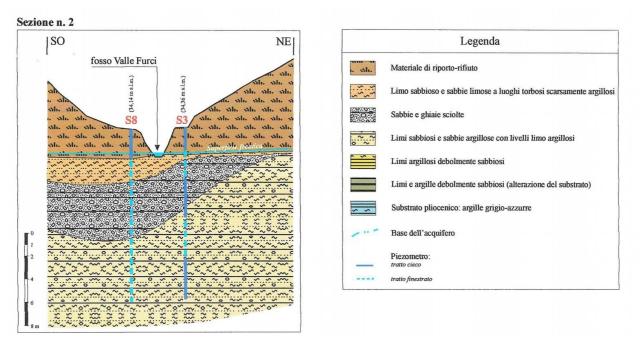


Fig. 11 – sezione stratigrafica estratta dal report di caratterizzazione 2009 Le successioni stratigrafiche del 2009 e 2020 sono confrontabili, in particolare nel sondaggio S9 che è stato

ripristinato (cfr. log incluso nel report di indagine Technosoil in allegato).

4.2 Idrogeologia del sito

Nel Piano di caratterizzazione del 2009 è stato effettuato un monitoraggio della superficie piezometrica a partire dalla rete di monitoraggio esistente dei piezometri installati (n. 9) all'interno del sito in esame. Dalla ricostruzione della morfologia della falda, si evince che quest'ultima viene alimentata anche nei periodi estivi, evidenziando come le acque di falda e quelle pluviometriche dai due versanti collinari confluiscono verso Fosso Grande e che le "due direttrici principali di drenaggio preferenziale a livello locale" sono lungo Fosso Grande e lungo la parte terminale del Fosso Valle Furci.

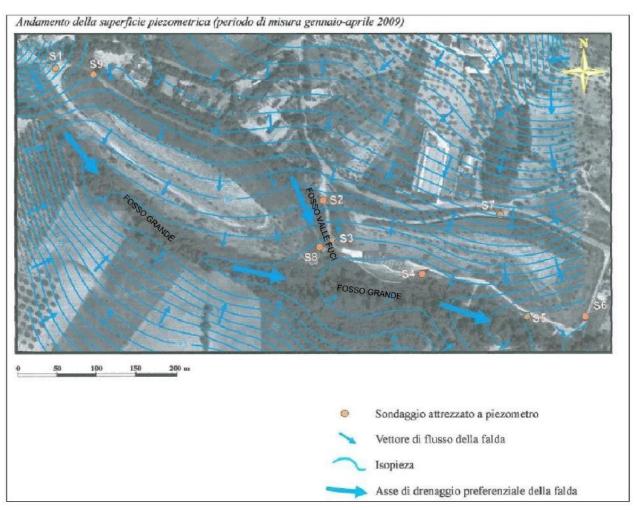


fig. 12 – carta piezometrica estratta dal report di caratterizzazione 2009

A seguito dell'ultimo sopralluogo effettuato nel sito, 4 dei 9 piezometri esistenti sono risultati non più utilizzabili, o perché sono irrintracciabili o perché ostruiti. Si riporta di seguito una tabella dei piezometri esistenti nel sito:

Piezometro	Quota falda (da bocca chiusino) m	Profondità (da bocca chiusino) m	Diametro piezometro mm	Note
S1	5.48	10.30	80	
S2	5.57	12.74	75	
S3	. 2	75	9	Ostruito, inutilizzabile
S4	2.54	9.60	75	
S5	3.81	12.72	80	inutilizzabile
S6		=	2	Irrintracciabile
S7	3.58	11.84	80	
S8	2.34	13.60	80	
S9		-	-	Irrintracciabile

Nella campagna di indagine del febbraio 2020, finalizzata al ripristino dei piezometri irrintracciabili/inutilizzabili, sono stati eseguiti n. 6 sondaggi geognostici a carotaggio continuo e successivamente attrezzati a piezometro. Al

termine della campagna geognostica, si è provveduto al rilievo plano-altimetrico tramite GPS della GEOMAX modello Zenith 35 PRO TAG Rover ed alle letture piezometriche di tutti i nuovi punti di sondaggio.

Fig. 13 - localizzazione punti di indagine

Le stratigrafie sono riportate nell'elaborato Technosoil allegato alla presente relazione tecnica.

La ricostruzione della superficie piezometrica ha confermato l'andamento delle direzioni di deflusso principale della falda locale (vedi in allegato <u>Tav. A</u> e <u>Tav. B</u>).

					LET	TURE PIEZOMETRI	CHE
ID SONDAGGIO	PROF. SRUMENTAZIONE (m da p.c.)	COORDIN	ATE GAUSS BOA	AGA	13.02.2020	21.02.2020	04.03.2020
		N	E	QUOTA (m s.l.m.)	m da p.c.	m da p.c.	m da p.c.
S 3	15	42°27'58.26" N	14°9'39.04"E	33.994	2.1	2.05	1.36
S4	15	42°27'56.96" N	14°9'43.80"E	32.315	2.7	2.74	2.64
S9	15	42°28'5.54" N	14°9'26.82"E	47.901		2.97	2.71
S 10	15	42°27'57.26" N	14°9'38.61"E	32.654	1.15	2.35	2.41
S11	15	42°27'56.12" N	14°9'53.22"E	31.453	100	4.5	4.2
S12	15	42°27'54.39" N	14°9'51.80"E	30.354	-	3.38	3.35

Fig. 14 – ricostruzione della piezometria febbraio 2020

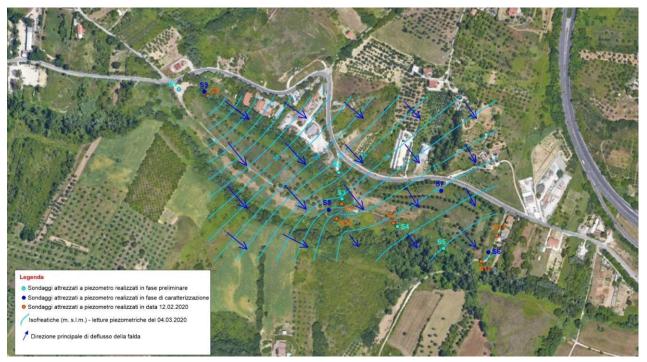


Fig. 15 – ricostruzione della piezometria marzo 2020

4.3 Qualità dei terreni

I risultati delle analisi sui campioni di terreno prelevati nell'ambito del monitoraggio 2020 sono stati confrontati con i limiti di concentrazione soglia (CSC) stabiliti dal D.Lgs. 152/06 Allegato 5 alla Parte IV, Titolo V, Tab. 1 (A), per uso verde pubblico, privato e residenziale.

I dati hanno evidenziato, per tutti gli analiti ricercati, valori al di sotto delle concentrazioni soglia di contaminazione (CSC) ad eccezione del punto di sondaggio S3, fra il primo e il secondo corpo di discarica, nel quale è stato riscontrato un superamento del limite di riferimento per il parametro idrocarburi pesanti C>12 alle profondità comprese tra 0,5-1 m (448 mg/kg) e 3,7-4,7 m (90 mg/kg) da p.c.

Sempre nel terreno S₃ ARTA rinviene il supermento del parametro Zinco nel terreno profondo, paro a 195 mg/kg. Si rimanda ai certificati/rapporti di prova in allegato.

Per quanto riguarda il punto S9, nel corso della terebrazione del sondaggio, realizzato in sostituzione del precedente (risultato irrintracciabile) e posizionato sulle medesime coordinate di quest'ultimo, seguendo le indicazioni contenute nel report relativo alle indagini di pre- caratterizzazione, è stato intercettato, a profondità comprese fra -3,9 e -4,8 m da p.c., un materiale anomalo riconducibile a rifiuto in degradazione. Il terreno prettamente di natura limosa, sottostante tale livello, è stato oggetto di prelievo di un campione, a profondità comprese tra -5 e -5,5 m da p.c. che è risultato conforme ai limiti di cui alla Col. A Tab 1 allegato 5 al titolo V del DLGS 152/06. Si rimanda ai certificati/rapporti di prova in allegato.

TERRENI 2020 Ex discarica RSU Fosso Grande - Pescara

	Ĩ .		MITI	3	12/02/2020			12/02/2020				13/02/2020			P.	12/02/2020	- 8		13/20/2020			13/02	/2020	
		DLGS 152/06	DLGS 152/06 Suplo e		S3			S4				S9				S10			S11			S	12	
Parametri	Unità di	Suolo e sottosuolo	sottosuolo	0.5-1m	3,7-4,7m	10-11m	0-1m	5-6m	10-11m	0.3-1m	5-5.5	16	10.6-	11-	0.4-1m	1,5-2,5m	2.5-3.5m	0.3-14m	6-7m	14-15m	1.2-2		3-4m	6-7m
	misura	Tab.1/A Siti ad	Tab.1/B Siti ad						110,000		100000000000000000000000000000000000000	ARTA									(177)		-	
		verde e resid.le	comm.le e ind.le	Greenlab 1261/20	Greenlab 1262/20	Greenlab 1263/20	Greenlab 1258/20	Greenlab 1259/20	Greenlab 1260/20	Greenlab 1273/20	Greenlab 1274/20	ARIA	Greenlab 1275/20	ARTA	Greenlab 1264/20	Greenlab 1265/20	Greenlab 1266/20	Greenlab 1270/20	Greenlab 1271/20	Greenlab 1272/20	Greenlab 1267/20	ARTA	Greenlab 1268/20	Greenlab 1269/20
Frazione granulometrica ≥ 2 mm	g/kg			142	0.0	47	0.0	0.0	0.0	0.0	0.60		90		0.0	0.0	0.0	81	0.0	0.0	210		0.0	0.0
Umidità sul campione tal quale	g/kg			142	213	172	133		167	141	142		185		166	159	185	173	194		138		169	194
Umidità su terra fine	g/kg			13	18	13	14		12	17	9.4		23		22	28	12	16	21	12	15		19	13
pH	Unità di pH			8,8	8,1	9,1	8,2		9,1	8,7	8,8		8,8		8,2	8,4	8.7	8,5	8,7	8,8	8,4		8,6	8,4
FOC Frazione organica del carbonio	%		3	1,3	1,3	1	2	2,6	3,4	3,3	2,0		1,3		1,7	1,3	1,3	1,7	1,0	0,67	1,4		2,3	3,3
Conducibilità METALLI	µS/cm			296	748	366	220	1058	508	304	2310		556		266	423	1186	356	179	366	584		546	582
Arsenico	mg/kg s.s.	20	50	3.4	4.6	11	6.2	9.9	10	11	7.7		7.9		9.1	8.4	16	9.4	8.1	7.9	6.4		10,0	9.4
Berillio	mg/kg s.s.	2	10	0.36	0.58	0,54	0.73		0.83	1,1	0.84		1,2		1,0	1,3	0.73	0.94	1,3		0.72		1,2	0,88
Cadmio	mg/kg s.s.	2	15	<0,11	< 0,14	<0,14	0,15	0,22	<0,15	0,15	0,16		0,15		<0,14	<0,14	< 0.13	0,18	0,16	0,15	0,15		<0.12	< 0,13
Cobalto	mg/kg s.s.	20	250	3,1	4,6	6,5	5,9	9,7	8,0	9,3	6,8		9,3		8,2	9,2	7,0	7,7	10	8,3	5,8		9,6	7,5
Cromo totale	mg/kg s.s.	150	800	22	32	32	40	66	47	61	45		58		55	69	45	49	69	40	37		62	48
Ferro	mg/kg s.s.			9275	11860	17940	15457	26390		24660	16860		23150		22530	25030	18850	20500	27070		15190		23940	18050
Manganese	mg/kg s.s.	v		214 <0.11	337 <0.14	520 <0,14	467 <0,12	714 <0.12	517 <0.15	601 <0,11	582 <0.11		669 <0.10		572 <0.14	609 <0.14	491 <0.13	443	573 <0.11	482 <0,11	405 <0,094		619 <0.12	572 <0,13
Mercurio Nichel	mg/kg s.s. mg/kg s.s.	120	500	9.4	13	10	19	9.4	<0,15 25	33	20		<0,10		<0,14	34	24	<0,12	37	<0,11	<0,094		31	<0,1.
Piombo	mg/kg s.s. mg/kg s.s.	100	1,000	5.6	5.8	5.8	12	16	8.1	9.7	8.7		11		8.8	9.7	6.8	15	11	8.3	10		9.6	7.8
Rame	mg/kg s.s.	120		7,9	20	12	29		14	17	11		17		18	18	12	38	18	16	22		13	14
Selenio	mg/kg s.s.	3	15	0,62	1,1	1.2	1,4		1,5	1,9	1.7		1.9		1.7	1.8	1.6	1,7	2,2		1,4		1.8	1,5
Zinco	mg/kg s.s.	150	1.500	30	32	42	38		52	77	70		75		56	66	41	69	80	61	45		58	46
-				5555	1000	833	3707	5,550	9000	5000	100000		1273		888	322	000	55550	1000		200		200	
Cromo VI	mg/kg s.s.	2	15	<2	<2	<2	<2	<2	<2	<2	<2		<2		<2	<2	<2	<2	<2	<2	<2		<2	<2
Cloruri	mg/kg s.s.			27	51	31	242	224	219	11	255		157		318	163	323	66	24		176		166	176
Solfati	mg/kg s.s.			22	32	25	45	49	41	121	26		14		64	43	64	69	37		170		139	170
Nitrati	mg/kg s.s.			6,3	14	5,2	19		<1.0	9,9	9,2		9,6		143	71	127	26	13	32	17		28	13
Nitriti	mg/kg s.s.		350	1,6 <0,079	<0,081	1,6	<1,0		<1,0 <0,082	2,0 <0,081	<0.081		<0.080		<0,079	<0.083	<0.080	2,6 <0,078	<0,076	3,1 <0,081	1,6 <0,082		1,5 <0,078	<0,077
Composti organostannici SOLVENTI ORGANICI AROMATICI	mg/kg s.s.		330	VU,079	VU,001	VU,U01	~0,063	10,001	10,002	VU,001	~0,061		<0,000		20,079	-0,063	~0,000	~0,078	40,076	10,001	<0,062		40,078	10,077
Benzene	mg/kg s.s.	0,1	2,0	<0,010	< 0,014	< 0,013	< 0.012	< 0.013	<0,013	< 0.012	< 0.012		< 0,012		< 0.013	< 0.013	< 0.013	< 0,012	< 0.013	<0.013	<0.010		< 0.013	< 0,013
Etilbenzene	mg/kg s.s.	0,5	50	<0,010	< 0.014	< 0.013	< 0.012	< 0,013		< 0.012	< 0.012		< 0.012		< 0.013	< 0.013	< 0.013	< 0.012	< 0.013	< 0.013	< 0.010		< 0,013	<0,013
Stirene	mg/kg s.s.	0,5	50	<0,010	< 0,014	<0,013	<0,012	<0,013		<0,012	< 0.012		<0,012		<0,013	< 0,013	<0,013	<0,012	<0,013	<0,013	<0,010		<0,013	<0,013
Toluene	mg/kg s.s.	0,5	50	<0,010	<0,014	<0,013	<0,012	<0,013	<0,013	<0,012	<0,012		<0,012		<0,013	< 0.013	<0,013	<0,012	<0,013	<0,013	<0,010		<0,013	<0,013
Xilene	mg/kg s.s.	0,5		<0,031	<0,041	<0,038	<0,036	<0,040	<0,039	<0,037	<0,037		<0,036		<0.039	<0,038	<0,039	<0,036	<0,040	<0,039	<0,029		<0,039	<0,040
Sommatoria organici aromatici	mg/kg s.s.	1	100	<0,063	<0,083	<0,076	<0,073	<0,080	<0,077	<0,073	<0,074		<0,072		<0,077	<0,075	<0,078	<0,072	<0,080	<0,079	<0,057		<0,077	<0,080
ALIFATICI CLORURATI CANCEROGENI	man Heart and	0.1	6.0	-0.040	-0.014	-0.012	-0.040	-0.010	-0.040	-0.010	-0.010		-0.040		-0.040	-0.040	-0.040	-0.040	-0.042	-0.040	-0.040		-0.040	-0.045
Clorometano Diclorometano	mg/kg s.s. mg/kg s.s.	0,1	5,0	<0,010 <0,052	<0,014 <0,069	<0,013	<0,012	<0,013 <0,067	<0,013	<0,012 <0,061	<0.012		<0,012 <0.060		<0.013	<0,013	<0.013	<0,012	<0,013	<0,013 <0,066	<0,010 <0,048		<0,013 <0,064	<0,013
Triclorometano	mg/kg s.s.	0,1		<0.010	< 0.014	<0.013	<0.012	<0.013	<0.013	<0.012	<0.002		<0.012		<0,004	<0.013	< 0.013	<0.012	<0.013	<0.013	<0.010		<0.013	<0,000
Cloruro di vinile	mg/kg s.s.	0,01		<0.005	< 0.007	<0.006	<0.008	<0.007	<0,013	<0.006	<0.006		<0,012		<0,013	<0.006	<0.006	<0.006	<0.007	<0.007	<0.005		<0.006	<0.007
1,2-dicloroetano	mg/kg s.s.	0,2	5,0	<0,010	< 0.014	<0.013	<0.012	< 0.013	< 0.013	<0.012	<0,012		<0.012		<0,013	< 0.013	< 0.013	<0,012	< 0.013	<0,013	<0.010		<0.013	<0.013
1,1-dicloroetilene	mg/kg s.s.	0,1	1,0	<0,010	<0,014	<0,013	<0,012	<0,013	<0,013	<0,012	<0,012		<0,012		<0.013	<0,013	< 0.013	<0,012	<0,013	<0.013	<0,010		<0,013	<0,013
Tricloroetilene	mg/kg s.s.	1	10	<0,010	< 0,014	<0,013	<0,012	<0,013		<0,012	< 0.012		<0,012		< 0.013	< 0,013	<0,013	< 0.012	<0,013	<0,013	<0,010		<0,013	< 0,013
Tetracloroetilene	mg/kg s.s.	0,5	20,0	<0,010	<0,014	<0,013	<0,012	<0,013	<0,013	<0,012	<0,012		<0,012		<0.013	<0,013	<0,013	<0,012	<0,013	<0,013	<0,010		<0,013	<0,013
ALIFATICI CLORURATI NON CANCEROGENI	VI CONTRACTOR			179676	111900000	000000	200,000,000	555555	1000000	10000000	0.00000		500000		59050	000000		100000		000000	5		100000000000000000000000000000000000000	NOVACO.
1,1-dicloroetano	mg/kg s.s.	0,5	30,0	<0,010	<0,014	<0,013	<0,012	<0,013	<0,013	<0,012	<0,012		<0,012		<0.013	<0,13	<0,013	<0,012	<0,013	<0,013	<0,010		<0,013	<0,013
1,2-dicloroetilene	mg/kg s.s.	0,3	15,0 50,0	<0,021	<0,028	<0.025	<0.024	<0,027	<0,026	<0,024	<0,025		<0,024		<0,026	<0.025	<0,026	<0,024	<0.027	<0,026	<0,019		<0,026	<0,027
1,1,1-tricloroetano	mg/kg s.s.	0,5	50,0	<0,010 <0,010	<0,014 <0,014	<0,013	<0,012	<0,013 <0,013	<0,013 <0,013	<0,012 <0,012	<0.012		<0,012 <0,012		<0,013	<0.013	<0,013	<0,012	<0,013	<0,013 <0,013	<0,010		<0,013	<0,013
1,1,2-tricloroetano	mg/kg s.s. mg/kg s.s.	0,5	15.0	<0.010	<0.014	<0.013	<0.012			<0.012	<0.012		<0.012		<0,013	<0.013	<0.013	<0.012	<0.013	<0,013	<0.010		<0.013	<0.013
1,2,3-tricloropropano	mg/kg s.s.	0,5	10,0	<0.010	< 0.014	<0.013	<0.012			<0.012	<0.012		<0.012		<0,013	<0.013	< 0.013	<0,012	<0.013	<0.013	<0,010		<0,013	<0.013
1.1.2.2-tetracloroetano	mg/kg s.s.	0.5	10.0	<0,010	< 0.014	<0,013	<0,012	<0.013		<0,012	<0,012		<0,012		<0,013	<0.013	< 0.013	<0,012	<0.013	<0,013	<0,010		<0.013	<0,013
ALIFATICI ALOGENATI CANCEROGENI		0,0	10,0	3,510	10000000	-,-10			3,310				2,272		2,510	-,-,-	-1010		0,010	-5,510	2,0,70		0,010	0,016
Tribromometano	mg/kg s.s.	0,5	10,0	<0,010	< 0.014	< 0.013	< 0.012	< 0.013	< 0.013	< 0.012	< 0.012		< 0.012		< 0.013	< 0.013	< 0.013	< 0.012	< 0.013	< 0.013	<0,010		< 0.013	< 0.01
1,2-dibromoetano	mg/kg s.s.	0,01	0,10	< 0.005	<0,007	<0,006	<0,006	<0,007	<0,006	<0,006	<0,006		<0,006		<0,006	<0,006	<0,006	< 0.006	<0,007	<0,007	< 0.005		<0,006	< 0.00
Dibromoclorometano	mg/kg s.s.	0,5	10,0	<0,010	< 0,014	< 0.013	<0,012			<0,012	< 0.012		<0,012		<0.013	< 0.013	<0,013	< 0,012	<0,013	<0,013	<0,010		<0,013	<0,013
Bromodiclorometano	mg/kg s.s.	0,5	10,0	<0,010	< 0.014	< 0.013	< 0.012	<0,013	<0,013	< 0.012	<0,012		<0,012		<0,013	< 0,013	<0,013	< 0.012	<0,013	<0,013	<0,010		< 0,013	<0,013
IDROCARBURI				522500	9,00	2000	5200	55012	19500	2500	500000				7,000		35,00	2000	201020	1000000	50000			3000
Idrocarburi leggeri C<12	mg/kg s.s.	10	250	<4,9	<5,8	<5,2	<5,4		<5,5	<5,7	<5.7		<4,4		<5,5	<5,7	<5,8	<5,2	<5,7	<5,9	<4,5		<5,9	<5,9
Idrocarburi pesanti C>12	mg/kg s.s.	50	750	448	90	18	13	11	10	11	14		8,6		16	21	<8,3	33	20	13	18		16	10

Fig. 16 – risultati analitici sui terreni campionati nel 2020

4.4 Qualità delle acque sotterranee

Si pongono a confronto i risultati delle analisi sui campioni di acqua sotterranea prelevati nel 2009 e nel 2020.

Risultati analisi acque sotterranee del 2009 (prima ADR)

Tabella 17/a - Risultati analitici relativi ai campioni di acque superficiali e di falda

	Unità	Limite CSC				Piezon	netri				Acq	
Parametro	misura	Tab. 2	S1	S2	53	S4	S6	S7	S8	S9	CF1	CF 2
			6.9	7.0	7.1	7,1	7,2	6.9	6.8	7,3	7,8	7,7
pH	0/	-	842	2950	2640	656	941	1845	2650	2430	2200	1870
Conducibilità elettrica	μS/cm		13,7	13,7	13,8	14.0	14.1	14.1	13.9	14.1	14,5	14,4
Temperatura	ok oC		42°F	70°F	66°F	30°F	46°F	79°F	67°F	52°F	95°F	81°F
Durezza totale			38	57	95	19	20	124	86	143	25	57
C.O.D.	mg/l		36	31	93		-					
Metalli		10	<1	4	15	1	<1	3	2	32	2	2
Arsenico	µg/1	10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmio	µg/l	50	<1	3	6	<1	4	2	4	14	<1	5
Cromo totale	дд/1	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cromo VI	µg/1	-	28	133	49	81	4	611	66	253	7	23
Ferro	μg/1	200				10	172	309	362	88	<1	1
Manganese	μg/1	50	9	227	521	2	8	3	22	29	<1	4
Nichel	µg/1	20	2	4	8 <1	<1	<1	<1	<1	<1	<1	<1
Piombo	μg/1	10	<2	<1		8	5	2	8	7	6	5
Rame	µg/1	1000	8	3	15	_		7,79	0,46	189,10	1,50	14,48
Azoto ammon. (NH4)	mg/l		0,54	123,20	57,70	0,69	3,18 140	55	370.1	188.5	290	205.4
Cloruri (Cl-)	mg/l		12,2	258,1	282	25,4	<100	<100	<100	<100	<100	<100
Idr. totali (n-esano)	μg/1	350	<100	<100	<100	<100	<100	<100	<100	100	100	-100
Inquinanti inorganici							20.000	-7.000	9463	<1000	10600	3210
Nitrati (NO3-)	μg/1		1100	<1000	13900	6100	22629	<1000		<1000	<100	8300
Nitriti (NO2-)	μg/l	500	<100	<100	7226	<100	<100	<100	<100	154,8	382,1	273.
Solfati (SO4=)	mg/l	250	73	190,3	183,6	48,8	60,8	158,9	65	134,0	302,1	210,
B.T.E.X.S.										- 1	<0.5	<0.5
Benzene	μg/1	1	<1	<1	<1	<1	<1	<1	<1	<1		<5
Etilbenzene	μg/l	50	<1	<1	<1	<1	<1	<1	<1	<1	<5	<5
Stirene	µg/1	25	<1	<1	<1	<1	<1	′ <1	<1	<1	<5	
Toluene	µg/1	15	<1	<1	<1	<1	<1	<1	<1	<1	<5	<5
p-Xilene	μg/1	10	<1	<1	<1	<1	<1	<1	<1	<1	<5	<5
LP.A.	Pa.											
Benzo(a)antracene	μg/1	0,1	< 0.05	<0.05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1	<0,1
Benzo(a)pirene	μg/1	0.01	<0.01	< 0.01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,0
Benzo(b)fluorantene	μg/1	0,1	<0.01	< 0.01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,0
The state of the s		0.05	<0.01	<0.01	< 0.01	<0.01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,0
Benzo(k)fluorantene	µg/1	0.01	<0.01	<0.01	<0.01	< 0.01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,0
Benzo(g, h, i,)perilene	μg/l	5	<0.05	<0.05	<0.05	<0.05	<0,05	<0,05	<0,05	<0,05	<5	<5
Crisene	µg/l	0.01	<0.01	<0,01	<0.01	<0,01	<0.01	<0,01	<0,01	<0,01	<0,01	<0,0
Dibenzo(a,h)antracene	µg/1	0,1	<0,01	<0,01	<0,01	<0.01	<0.01	<0.01	<0,01	<0,01	<0,01	<0,0
Indenopirene	<u>µg/1</u>	50	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Pirene	μg/l	30	×1	-1	-1							
Alifatici Clorur. canc.		1.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Clorometano	µg/1	1,5	_	<1	<1	<1	<1	<1	<1	<1		
Diclorometano	µg/l	0.15	<0.1	<0,1	<0.1	<0.1	<0.1	<0.1	<0.1	<0,1	0,50	<0,
Triclorometano	μg/Ι	0,15	<0,1	<0,1	<0,1	<0,1	<0.1	<0.1	<0.1	<0,1	<0,5	<0,
Cloruro di Vinile	μg/l	0,5		<0,1	<0,1	<1	<1	<1	<1	<1	<1	<1
1,2-Dicloroetano	µg/l	3	<1	<0.05	<0.05	<0.05	<0,05	<0.05	<0.05	<0,05	<0,05	<0,0
1,1 Dicloroetilene	µg/1	0,05	<0,05		<1	<1	<1	<1	<1	<1	<1	<1
Tricloroetilene	μg/l	1,5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tetracloroetilene (PCE)	µg/l	1,1	<1		<0.1	<0.1	<0,1	<0,1	<0.1	<0,1	<0.1	<0,
Esaclorobutadiene	μg/1	0,15	<0,1	<0,1	<0,1	~0,1	-0,1	-0,1	1	1	1	
Alifatici Clorur non canc.					-	-	<1	<1	<1	<1	<1	<1
1,1-Dicloroetano	μg/l	810	<1	<1	<1	<1	<1	<1	<1	<1	<1	<
1,2-Dicloroetilene	µg/l	60	<1	<1	<1			<1	<1	<1	<0.1	<0.
1,1,1-Tricloroetano	µg/1		<1	<1	<1	<1	<1		0.52	<0,1	<0.1	<0.
1,2-Dicloropropano	µg/1	0,15	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1		<0.1	<0.1	<0.
1,1,2-Tricloroetano	µg/1	0,2	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0.001	<0,001	<0.0
1,2,3-Tricloropropano	μg/1	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	-	<0,001	<0,
1,1,2,2-Tetracloroetano	μg/1	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,005	<0,05	<0,03	10,
Analisi batteriologica	1.0									-	100	1
Escherichia coli	UFC/100 ml									-	150	30
Coliformi fecali	UFC/100 ml										50	20

Fig. 17 – risultati analitici delle acque sotterranee – 2009

Risultati analisi acque sotterranee del 2020:

ACQUE SOTTERRANEE 2020 Ex discarica RSU - Loc. Fosso Grande - Pescara

		LIMITI						05/03/2020					
Parametri	Unità di misura	DLGS 152/06 Tabella 2	000	3	S4	S8		9	S10		11	S1	
		Acque sotterranee	Green/ab 1276/20	ARTA	Greenlab 1277/20	Greenlab 1278/20	Greenlab 1279/20	ARTA	Greenlab 1280/20	Greenlab 1281/20	ARTA	Greenlab 1282/20	ARTA
METALLI		3	12/0/20		1211120	1210/20	1213120		1200120	1201120		1202/20	
lluminio	µg/L	200	27		4,1	1,5	3265		11	2.6		6.6	
ntimonio	µg/L	5	0.70		0.77	<0.50	23		0.93	0.78		1,1	
rgento	µg/L	10	<1.0		<1.0	<1.0	<1,0		<1.0	<1,0		<1,0	
rsenico	µg/L	10	<1,0		9,9	2,3	54		13	5,1		32	
		4	<0.10		<0,10	<0.10	<0.10		<0.10	<0.10		<0,10	
erillio admio	µg/L	5	<0.50		<0.50	<0.50	<0.50		<0.50	<0.50		<0.50	
obalto	µg/L		<1,0	_	15	3,2	46		8,8	6,3		8,2	
	µg/L	50											
romo totale	µg/L	50	1,0		6,7	2,6	1790		21	3,6		7,3	
romo VI	μg/L	5	<0,30		<0,30	<0,30	<0,30		<0,30	<0,30		<0,30	
егто	µg/L	200	69		6091	396	22770		159	36		4803	
lercurio	µg/L	1	<0,10		<0,10	<0,10	<0,10		<0.10	<0,10		<0,10	
lichel	µg/L	20	1,8		116	35	297		74	80		72	
liombo	µg/L	10	<1,0		<1,0	<1.0	73		<1,0	<1,0		<1,0	
tame	µg/L	1.000	1,4		<1,0	<1,0	293		6,4	5,0		<1,0	
elenio	µg/L	10	<1,0		<1,0	<1,0	<1,0		<1,0	<1,0		<1,0	
langanese	µg/L	50(154*)	546		1273	623	479		528	1650		486	
allio	µg/L	2	<0.10		<0.10	<0.10	<0.10		< 0.10	<0.10		<0.10	
înco	μg/L	3.000	4,6		2.3	<1,0	411		3,5	12		3,0	
INQUINANTI INORGANICI	- 3	2.220	1,0		2,0	,0			-,0			2,0	
oro	µg/L	1.000	<1,0		1939	14	34500		2030	12		716	
iuanuri liberi	µg/L	50	<10		<10	<10	<10		<10	<10		<10	
luoruri	µg/L	1.500	<100		<100	<100	<100		<100	<100		<100	
litriti	ug/L	500	1890		73	139	813		413	85		1620	
olfati	mg/L	250	146		151	73,6	0.81		35,1	76.2		79	
orari	mg/L	230	1,14		<0,10	<0,10	420		<0,10	<0.10		<0,10	
COMPOSTI ORGANICI AROMATICI	mg/L		1,14		VU, 10	×0,10	420		50,10	NU, 10		20,10	
	1/4/8		<0.10		40.40	<0.10	0,90		<0.10	<0.10		<0.10	
enzene	µg/L	50	<0,10		<0,10	<0.10	11		<0.10	<0.10			
tilbenzene	µg/L	25	<0,10		<0,10	<0,10	3,4		<0,10	<0,10		<0,10	
tirene	µg/L						5,4					<0,10	
oluene	μg/L	15	<0,10		<0,10	<0,10			<0,10	<0,10		<0,10	
-xilene	µg/L	10	<0,10		<0.10	<0,10	12		<0,10	<0,10		<0,10	
IPA	1000					100000							
enzo(a)antracene	μg/L	0,1	0,003		0,005	0,004	0,042		0,005	0,005		0,006	
enzo(a)pirene	µg/L	0,01	0,004		0,005	0,003	0,025		0,004	0,005		0,006	
enzo(b)fluorantrene	µg/L	0,1	0,004		0,003	<0,002	0,013		0,003	0,005		0,003	
lenzo(k)fluorantene	µg/L	0,05	<0,002		<0,002	<0,002	0,006		< 0,002	<0,002		< 0,002	
lenzo(g,h,i]perilene	µg/L	0,01	<0,002		0,004	0,003	0,013		0,004	0,004		0,007	
Crisene	µg/L	5	0,003		0,005	0,004	0,052		0,005	800,0		0,006	
Dibenzo[a,h]antracene	µg/L	0,01	< 0.002		<0,002	< 0.002	0,004		< 0.002	< 0.002		< 0.002	
ndeno[1,2,3-c,d]pirene	µg/L	0,1	<0.002		<0,002	< 0.002	0,007		< 0.002	< 0.002		<0,002	
Pirene	µg/L	50	0,010		0,010	0,018	0,13		0,003	0,015		0,004	
Sommatoria	μg/L	0.1	0.010		0,011	0.009	0.039		0.011	0.013		0.014	
ALIFATICI CLORURATI CANCEROGENI													
Clorometano	µg/L	1,5	<0,10		<0,10	<0,10	<0.10		< 0.10	<0,10		<0,10	
riclorometano	µg/L	0.15	< 0.020		< 0.020	< 0.020	0.12		< 0.020	< 0.020		< 0.020	
Cloruro di vinile	µg/L	0,5	<0.020		<0.020	0.35	8,8		<0.020	<0.020		<0,020	
,2-dicloroetano	µg/L	3	<0.10		<0,10	<0.10	<0.10		<0,10	<0.10		<0.10	
,1-dicloroetilene	µg/L	0.05	<0.005		<0.005	<0.005	<0.005		<0,005	<0.005		<0.005	
ricloroetilene	µg/L	1,5	<0,000		<0,000	<0,10	0,003		<0,10	<0,10		<0,10	
etracloroetilene	µg/L	1,1	<0.10		<0,10	<0.10	<0,10		<0.10	<0,10		<0,10	
saciorobutadiene	ug/L	0,15	<0.010		<0,10	<0.010	<0,010		<0.010	<0.010		<0.010	
	µg/L µg/L	10	<0.46		<0,46	0,78	9,5		<0.46	<0,46		<0,010	
commatoria otganoalogenati ALIFATICI CLORURATI NON CANCEROGENI	pyrc	10	~0,40		~0,40	0,70	8,3		~0,40	50,40		~0,40	
,1-dicloroetano	µg/L	810	<0.050		< 0.050	<0.050	<0,050		< 0.050	0.089		< 0.050	
,2-dicloroetilene	µg/L	0,15	<0.20		<0,20	3,9	15		<0,20	<0.20		<0.20	
2-dicloropropano	µg/L		<0,010		<0,010	0,52	1,7		<0,010	0,021		<0,010	
1,2-tricloroetano	µg/L	0,2	<0,020		<0,020	<0,020	<0,020		<0,020	<0,020		<0,020	
,2,3-tricloropropano	µg/L	0,001	<0,001		<0,001	<0,001	<0,001		<0,001	<0,001		<0,001	
1,2,2-tetracloroetano	µg/L	0,05	<0,005		<0,005	<0,005	<0,005		<0,005	<0,005		<0,005	
ALIFATICI ALOGENATI CANCEROGENI			-		-								
ribromometano	µg/L	0,3	<0.020		<0,020	< 0.020	<0,020		<0,020	<0,020		<0,020	
2-dibromoetano	μg/L	0,001	<0,001		<0,001	<0,001	<0,001		<0,001	<0,001		<0,001	
ibromoclorometano	μg/L	0,13	<0,020		<0,020	<0,020	<0,020		<0,020	<0,020		<0,020	
romodiclorometano	µg/L	0,17	<0.020		<0,020	<0,020	<0,020	1	<0,020	<0,020		<0,020	
IDROCARBURI													
frocarburi totali	μg/L	350	558		979	185	7432		455	237		963	
frocarburi C6-C10	µg/L		<50		<50	<50	1170		<50	<50		<50	
drocarburi C10-C40	µg/L		508		929	135	6262		405	187		913	
			300									- 10	
Azoto ammoniacale	mg/L	8	5.2		17	1.32	523		39	8.2		34	
Richiesta biochimica di ossigeno BOD5	mg/L		<5		110	35	2550		120	60		110	

Fig. 17bis – risultati analitici delle acque sotterranee – 2020

Nel 2020 si registrano tre elementi di rilievo:

 un innalzamento generalizzato delle concentrazioni dei metalli, anche sicuramente legato alla diversa metodica di preparazione del campione, per cui non viene più arrestata la reazione di precipitazione per acidificazione in campo.

- 2. Un decremento importante della concentrazione dei parametri che indicano l'età della discarica, come i nitriti e solfati e azoto ammoniacale
- 3. Un nuovo inquinamento, diverso da quello correlato alla degradazione degli RSU, per cui emerge un plume di idrocarburi C10-C40 e BTEX, solventi clorurati e IPA, in particolare nel piezometro corrispondente al sondaggio 9.

La speciazione dell'idrocarburi ricostruita dal Laboratorio ai fini dell'ADR evidenzia che la frazione critica per la volatilizzazione da falda (alifatici C9-C12) pesa solo per circa il 18% dell'intera concentrazione, anche attribuendo a tale frazione la fascia C6- C10, mentre il restante 82% è ascrivibile ad una frazione C<12 - C40.

Parametro	Metodo	Valore Rilevato	Unità di misura	Valore limite(a
Idrocarburi totali' (espressi come n-esano)		7432←	μg/l	350
- Idrocarburi C6-C10°	EPA 5021A 2003 + EPA 8015D 2003	1170	μg/1	
- Idrocarburi C10-C40° di cui:	UNI EN ISO 9377-2:2002	6262	μg/l	
Idrocarburi C10-C12		151	μg/l	
Idrocarburi C>12-C40		6111	μg/l	

(a) Valori di concentrazione soglia di contaminazione, Tabella 2, Allegato 5 al Titolo V della Parte Quarta del D. Lgs. 3 aprile 2006, n. 152 e s.m.i.- Acque sotterranee.

Fig. 17 ter – stralcio RP integrazione speciazione MADEP sul picco di idrocarburi rilevato nel S9/PZ9

In corrispondenza del punto S9, attrezzato a piezometro (S9/Pz9)) si riscontrano i massimi di concentrazione per metalli diversi da ferro e manganese, ed esattamente Alluminio, Antimonio, Cromo totale, Nichel e Piombo, così come per i composti organici aromatici (Toluene e p-xilene), policiclici aromatici (Benzo(a)pirene e Benzo(g,h,i)perilene) ed alifatici clorurati (Cloruro di vinile) oltre al composto 1,2- dicloropropano, nonché per Boro, BOD, COD e Azoto ammoniacale. Si riportano di seguito i dati ARTA sulle acque sotterranee acquisiti in conferenza dei servizi.

Piezometri				
Sostanze	S3	S 9	S11	S12
Nitriti µg/L	608	<20	<20	<20
Arsenico µg/L	1.30	29	7.50	40.8
Ferro µg/L	133	17139	221	6650
Manganese μg/L	470	74.5*	1205	499
Alluminio µg/L	6.03	3551	16.5	123
Boro μg/L	716	18472	661	1310
Cadmio µg/L	0.02	11.3	0.03	0.03
Cromo totale µg/L	2.1	1458	12.4	19.5
Nichel µg/L	3.3	183	99.7	100.7
Piombo μg/L	<0.2	35.9	<0.2	0.4
Selenio µg/L	< 0,1	42	0.1	0.2
Ione Ammonio µg/L	N.D.	1814000	<20	<20
Toluene μg/L	<0.1	56	<0.1	<0.1
Xileni µg/L	<0.1	21	<0.1	<0.1
Cloruro di vinile µg/L	<0.05	14.80	<0.05	<0.05
Sommatoria Organoalogenati	<1	14.80	<1	<1
1.2-dicloropropano µg/L	0.02	4.15	0.06	0.06
COD mg/L	20	4790	77	111
BOD mg/L	5	180	49	14

^{*} valori per Manganese individuati con DGR 225/16 pari a 154 µg/L

L'input dell'analisi di rischio terrà conto dei dati peggiori conseguiti nell'ultima campagna di monitoraggio, fra laboratorio di parte e ARTA.

Alla luce di risultati analitici sui campioni di acqua prelevati dalla rete dei piezometri attualmente campionabile, è importante sottolineare che il campione riferito al punto d'indagine denominato S9 presenta caratteristiche nuove rispetto al 2009 e nuove rispetto ad un quadro tradizionale di contaminazione da discarica di RSU.

L'analisi di rischio è articolata su due sorgenti:

- una centrata sul poligono di Thiessen identificativo dell'area di pertinenza del piezometro S9, con un punto di conformità in valle idraulico ubicato alla fine del primo corpo di discarica, come da indicazioni ARTA
- l'altra comprendente il restante corpo della discarica, che include anche l'anomalia nel terreno in corrispondenza del sondaggio S3.

4.5 Caratteristiche del percolato/rifiuti liquidi prelevati nei manufatti di contenimento

Durante l'ultima campagna indagine del 2020, nel mese di febbraio (cfr. certificati analitici in allegato) sono stati prelevati ed analizzati n. 5 campioni di liquido presente all'interno dei manufatti/cisterne interrate poste lungo il tratto perimetrale meridionale dei due corpi di discarica, come nella planimetria a seguire. Si evidenzia che la planimetria di progetto del 1999 (cfr. Capitolo 2) individua soltanto due vasche di raccolta del "liquame", che dovrebbero corrispondere ai manufatti 1 e 4 della figura sottostante. Pertanto, non è chiaro se le cisterne interrate identificate con i numeri 2, 3 e 5, siano associate al sistema di drenaggio delle acque di corrivazione oppure se, almeno in parte (manufatto 5), anche alla rete di recupero del percolato.

Fig. 18: localizzazione dei manufatti e dei presidi rinvenuti e di nuovo impianto

La produzione di percolato in discarica deriva principalmente dall'azione dell'acqua meteorica sui rifiuti abbancati e dal processo di mineralizzazione degli stessi. Il percolato presenta caratteristiche estremamente variabili, generalmente ad alto tenore di inquinanti organici ed inorganici derivanti dai processi biologici e chimico-fisici che

avvengono nell'ammasso dei rifiuti. I fattori principali che influenzano la composizione del percolato sono riconducibili al volume, alla tipologia ed all'età dei rifiuti abbancati, ai parametri chimico-fisici dell'ambiente presente all'interno del corpo di discarica (pH, temperatura, umidità e clima generale), alle caratteristiche costruttive gestionali dell'impianto e ai valori di precipitazione (infiltrazione all'interno del corpo di discarica). La qualità del percolato è influenzata principalmente dalla tipologia dei rifiuti presenti e dalle variazioni e modificazioni della materia organica contenuta nei rifiuti, mentre la quantità di percolato dipende sostanzialmente dal volume di infiltrazione e dalle caratteristiche dei rifiuti quali densità, età e spessore.

Le analisi chimiche sui campioni – assunti tutti cautelativamente come "percolato" - hanno permesso di caratterizzare qualitativamente il liquido presente all'interno delle cisterne interrate. Da una prima valutazione in riferimento al profilo temporale di un percolato da RSU, la discarica chiusa nel 1991 dovrebbe trovarsi in una fase finale aerobica. Nel caso di specie non appare una netta differenziazione fra manufatti di regimazione delle acque di corrivazione e "fognature di smaltimento percolato".

Rapporto di prova Rifiuti prelevati nei manufatti interrati e considerati come "Percolato/liquame"		1139/2020	1095/2020	1104/2020	1105/2020	1106/2020
Parametro	u.m	P1	P2	P3	P4	P5
pН		7,4	8,2	8,3	8,2	7,9
COD	O2 mg/kg	248	650	1577	530	2824
NH ₄ +	mg/kg	121	380	614	317	1189

5. SORGENTI DI CONTAMINAZIONE INDIVIDUATE

5.1 Sorgente primaria

La sorgente primaria è rappresentata dai rifiuti solidi urbani abbancati in rilevato costituenti il corpo della discarica e dal percolato di discarica, sicuramente ancora prodotto e presente sia sulla zona di drenaggio che nel sistema di regimazione, che va messo in sicurezza mediante una verifica della tenuta sia dei corpi cavi interrati, che delle tubazioni per tratti. Non si esclude la sussistenza di sorgenti off site in monte idraulico. Considerata la diversità della contaminazione, sulla base di poligoni di Thiessen sviluppati sui 6 sondaggi 2020, si ricava la rappresentazione delle due aree – sorgente, rispettivamente A – sorgente della contaminazione tipo S9, e B- sorgente discarica, comprensiva dell'anomalia rilevata nel terreno del sondaggio S3.

Fig. 19 - Sorgente S9 con nuovo inquinamento – area A

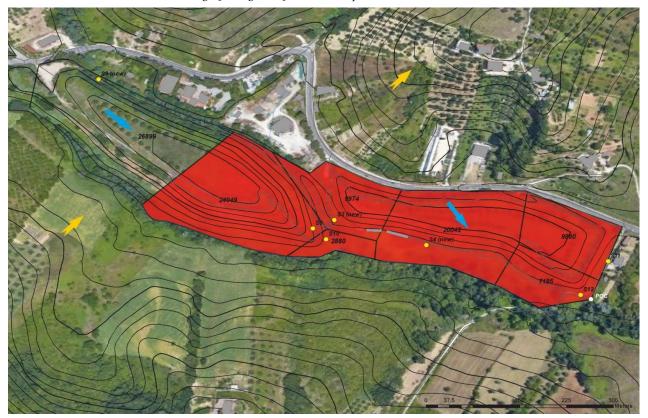


Fig. 20 - Corpo di discarica – area B

5.2 Sorgenti secondarie

La sorgente secondaria è rappresentata dalla falda, che risente sia della contaminazione da eluato/percolato sia di una sorgente diversa in monte idraulico. Considerando la soggiacenza di falda e le caratteristiche costruttive della discarica, la quota di percolato che non viene drenata nel sistema esistente migra diffondendosi in falda, dando luogo ad un pennacchio (*plume*) che si propaga nell'acquifero, costituito dai limi sabbiosi e argillosi, seguendo linee di drenaggio preferenziale coincidenti con il fosso Valle Furci e fosso Grande. L'altra fonte di contaminazione, per idrocarburi, IPA, solventi clorurati e Alluminio, Antimonio, Cromo totale e Piombo, oltre a composti organici aromatici (Toluene e p-xilene) è nuova rispetto al monitoraggio 2009 e va individuata in monte idraulico mediante la realizzazione di ulteriori piezometri di prossimità e conterminata.

5.3 Percorsi di migrazione/esposizione

I percorsi di migrazione dei contaminanti e gli scenari di esposizione sono individuati con riferimento a: – caratteristiche sito-specifiche dell'area in esame;

- potenziali sorgenti di contaminazione
- comportamento dei contaminanti nelle matrici ambientali;
 modello idrogeologico.

In relazione all'attuale utilizzo dell'area, si ritiene che la potenziale via di migrazione dei contaminanti dalla sorgente primaria è da identificarsi nelle acque sotterranee per trasporto in fase disciolta e per volatilizzazione delle sostanze stesse.

5.4 Potenziali bersagli

I bersagli della contaminazione, sono rappresentati dalle acque sotterranee (rischio per la risorsa idrica) e la popolazione residente che per l'estrema potenziale volatilizzazione di alcuni composti possono inalare i vapori provenienti dalla falda. Ulteriori recettori sono coloro che fruiscono dell'acqua dei pozzi e del fosso Grande, ubicati a valle della discarica e più precisamente le colture eventualmente irrigate con queste acque. Le vie di esposizione a tali utilizzi sono chiaramente l'ingestione, il contatto dermico, inalazione dell'acqua nebulizzata e ingestione di frutta e verdura irrigata con l'acqua di falda. In particolare le acque sotterranee, contenute all'interno dell'acquifero, se pur limitate quantitativamente, tendono ad avere come recapito, le acque superficiali del Fosso Grande e le acque del Fiume Pescara. Lo scenario di uso è residenziale ricreativo anche on site, in previsione del completamento della naturalizzazione e Messa in sicurezza permanente dell'area.

Come da indicazioni ARTA viene riportato l'inquadramento dei recettori, sia come distanze dalla sorgente che come destinazione d'uso.

SORGENTE A - S9

Fig. 21 - Corpo di discarica - sorgente A distanza e funzione recettori

Si evidenzia che il recettore residenziale è a una distanza minima di 22 metri, rispetto alla perimetrazione della sorgente S9, mentre il recettore produttivo è a distanza minima di 8 metri.

Fig. 21 - Corpo di discarica - sorgente B distanza e funzione recettori

Nella sorgente B il il recettore residenziale è a una distanza minima di 4 metri, rispetto alla perimetrazione, mentre il recettore produttivo è a distanza minima di 8 metri.

5.5 Riferimenti bibliografici e metodologia adottata per l'Analisi di Rischio

L'Allegato 1 al titolo V del D. Lgs. 152/2006, così come modificato dal Dlgs n. 4 del 16.01.08 prevede che: "data l'importanza della definizione dei livelli di bonifica (CSR) le procedure per il calcolo dovranno essere condotte mediante l'utilizzo di metodologie quali ad esempio ASTM-PS 104, di comprovata validità sia dal punto di vista delle basi scientifiche che supportano gli algoritmi di calcolo che della riproducibilità dei risultati". Per quanto riguarda i riferimenti nazionali, oltre al testo del D.Lgs. 152/06 e s.m.i. laddove tratta della procedura di Analisi di Rischio (Allegato 1 al Titolo V parte quarta), si farà riferimento per quanto applicabile nel contesto normativo suddetto al Manuale UNICHIM nº 96/ (2002) "Suoli e falde contaminati. Analisi di Rischio sito specifica. Criteri e parametri" ed al documento "Criteri metodologici per l'applicazione dell'analisi assoluta di rischio ai siti contaminati - Agenzia per la Protezione dell'Ambiente e per i Servizi Tecnici (APAT). La procedura utilizzata, in accordo con gli standard ASTM, è strutturata secondo il principio di cautela, o di conservatività, che caratterizza ogni fase del processo di analisi e che guida la scelta dei dati di input, sia quelli sito-specifici, sia quelli di esposizione e di tossicità. Essa, quindi, garantisce ampiamente che i dati di concentrazione accettabile, derivati da un predefinito livello di rischio accettabile, siano effettivamente protettivi per la salute dei potenziali bersagli della contaminazione.

L'Analisi di Rischio svolta per il sito in oggetto è da considerarsi in questa fase una analisi di secondo livello, eseguita adottando valori sito-specifici, disponibili e derivanti dalla caratterizzazione del sito e, in alternativa, valori conservativi di default; per la modellazione idrogeologica e di trasporto della contaminazione sono state utilizzate equazioni di tipo analitico. Per le elaborazioni numeriche è stato utilizzato il software **Risk-net versione 3.1** (sviluppato nell'ambito della rete RECONnet "Rete Nazionale sulla gestione e la Bonifica dei Siti Contaminati" su iniziativa del Dipartimento di Ingegneria Civile dell'Università di Roma "Tor Vergata").

5.5.1 Assunzioni generali

L'incertezza associata ad un'analisi di rischio è dovuta ad una combinazione delle incertezze legate alla caratterizzazione del sito, alla valutazione della tossicità/cancerogenicità delle sostanze indice e dell'esposizione. La formulazione delle assunzioni è stata effettuata sulla base del giudizio professionale, in accordo con gli standard adottati ed in un'ottica cautelativa, al fine di garantire la conservatività ed il rigore scientifico dei risultati. La presente Analisi di Rischio si basa sul modello concettuale illustrato nel capitolo seguente, considerando i dati disponibili al momento della redazione del presente documento, ed utilizzando ipotesi molto conservative. Per ciò che riguarda la valutazione della tossicità/cancerogenicità delle sostanze indice si è fatto riferimento a valori conservativi, riconosciuti a livello italiano e internazionale. Inoltre in via cautelativa si è assunta l'additività degli effetti tossici e cancerogeni delle singole sostanze. Non sono stati considerati eventuali effetti sinergici o interazioni antagonistiche delle sostanze indice.

5.5.2 Criteri di accettabilità del rischio e riferimenti normativi

Il D.Lgs. 152/06, Allegato 1 Titolo V, modificato dal D.Lgs. 4 del 16.01.08, propone 1x10⁻⁶ come valore di rischio incrementale accettabile per la singola sostanza cancerogena e 1x 10⁻⁵ come valore di rischio incrementale accettabile cumulato per tutte le sostanze cancerogene; per le sostanze non cancerogene applica il criterio del non superamento della dose tollerabile o accettabile (ADI o TDI) definita per la sostanza (Hazard Index complessivo 1). Nell'elaborazione realizzata pertanto sono stati assunti i seguenti valori di rischio accettabile:

Rischio cancerogeno per esposizione ad un singolo agente cancerogeno: 10⁻⁶;

Rischio cancerogeno cumulativo: 10⁻⁵;

Indice di Rischio relativo all'esposizione ad un singolo agente tossico (Hazard Quotient, HQ): 1; Indice di Rischio cumulativo (Hazard Index, HI): 1.

I criteri di accettabilità del rischio sanitario proposti dal D. Lgs. 152/2006 sono ben supportati da altri importanti riferimenti bibliografici e scientifici.

6. ANALISI DI RISCHIO SANITARIO AMBIENTALE - APPLICAZIONE AL CASO IN ESAME

I dati sito-specifici derivanti dalla caratterizzazione hanno permesso di definire il modello concettuale definitivo per l'analisi di rischio sanitario-ambientale, al fine di definire le concentrazioni residue ammissibili (CSR). L'analisi di rischio non può essere applicata sulla sorgente primaria; le sorgenti secondarie risultate "potenzialmente contaminate" (art. 240 comma lett. d) sono rappresentate esclusivamente dalle acque di falda. Volendo determinare il rischio nelle condizioni più cautelative possibili, le concentrazioni alle sorgenti considerate per ciascun contaminante sono le massime riscontrate nella campagna 2020, che è risultata decisamente peggiore di quella del 2009.

L'area è stata ripartita in due zone, in funzione della perimetrazione della sorgente secondaria.

- L'area A corrisponde al poligono di Thiessen nell'intorno del piezometro S9, in cui sussiste il picco della contaminazione delle acque sotterranee.
- L'area B corrisponde al resto del corpo di discarica, in cui coesistono superamenti nelle acque sotterranee
 l'unico superamento dei terreni riscontrato nel sondaggio S3.

Per la soggiacenza della falda è stata considerata la minima riscontrata relativamente alla falda superficiale in ciascuna delle due zone; in particolare, il dato di soggiacenza utilizzato per la sorgente in falda superficiale è pari a 2, 7 per l'area A (S9) e 1,15 m per l'area B (S10, lettura piezometrica del 13.02.2020).

POC (punto di conformità) - secondo il Dlgs n.4/08 è il punto a valle idrogeologico dalla sorgente al quale deve essere garantito il ripristino dello stato originario (ecologico, chimico e/o quantitativo) del corpo idrico sotterraneo, onde consentire tutti i suoi usi potenziali, secondo quanto previsto nella parte terza (art. 76) e nella parte sesta del decreto (art. 300). **Il POC dell'area A è posto a 200 metri**, come da indicazioni ARTA, ovvero in corrispondenza della fine del primo corpo di discarica. Il POC dell'area B, che è a ridosso del confine della discarica, è 0,1 metri. Lo scenario di esposizione alla sorgente secondaria è on site solo outdoor (uso ricreativo), off site (residenziale e artigianale), sia indoor che outdoor.

Per l'analisi di rischio è stato utilizzato il software **Risk-net vers. 3.1** che implementa l'ultima versione della banca dati ISS-INAIL (2018).

6. Dati sito specifici per l'analisi di rischio

Al fine di caratterizzare in dettaglio il sito, per avere una rappresentazione quanto più possibile reale nella

costruzione del modello geologico ambientale per l'analisi di rischio, le indagini di caratterizzazione sono state

integrate con:

- analisi dei dati meteo climatici, direzione e velocità del vento;

- caratteristiche dei terreni (densità, permeabilità, contenuto volumetrico d'acqua, d'aria) ecc.; -

geometria della sorgente.

Analisi dei dati meteoclimatici della stazione di Colle Marino (PE)

(LAT: 42.3 N LONG: 14.1 E)

Precipitazioni media annua - 41.4 cm/a;

direzione venti - da SW; velocità vento

- 1,44 m/sec.

Parametri del sito

Nelle condizioni più cautelative possibili ai fini dell'analisi di rischio, sia per il comparto insaturo che per il saturo

è stata considerata la tessitura <u>SANDY LOAM</u>. Lo spessore dell'acquifero risulta pari a circa 5 m, sulla base dei dati

desunti dalla caratterizzazione (sondaggi geognostici e sezioni geologiche disponibili). L'area sorgente coincidente

con l'intero sito, pari a circa 100.900 mq, si estende per tutta la lunghezza della discarica fino all'incisione del Fosso

Grande a Sud della discarica stessa. Si rimanda alla Tav. 1 in allegato per gli altri parametri relativi alla geometria

della sorgente.

Altre opzioni

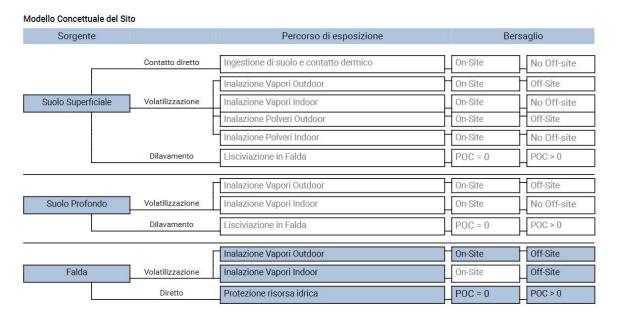
E' stata considerata la Csat solo per il calcolo delle Concentrazioni Soglia di Rischio, e non per il calcolo del Rischio.

Non ci sono evidenze di campo di surnatante, per cui la presenza di concentrazioni superiori alla Csat nella

simulazione è esclusivamente ascrivile alla speciazione conservativa degli idrocarburi. Si assume la biodegradazione

del contaminante.

32



Recettori

Si considera l'uso off – site conservativamente come tutto residenziale, condistanza minima del recettore posto a 8 metri rispetto alla perimetrazione della sorgente S9 (area A) e a 4 metri rispetto alla perimetrazione della sorgente B.

7. RISULTATI DELL'ANALISI DI RISCHIO - LIVELLO 2 AREA A (S9)

Il modello concettuale della zona A prevede la sola contaminazione della falda. Non è attivato il percorso di esposizione indoor on site.

Recettori on-site: Adulti e Bambini (Adjusted) Recettori off-site: Adulti e Bambini (Adjusted)

Parametri del sito - Geometria Sorgenti

Descrizione			Valore		
Parametro	Simbolo	Default	Sito-Specifico	UM	check
G	eometria Sorger	nti	•		
Stessa dime	ensione per tutte	e le sorgenti	71)	-11	700
Estensione della sorgente nella direzione del flusso di falda	W	45	290	m	0
Estensione della sorgente nella direzione ortogonale al flusso di falda	Sw	45	163	m	0
Altezza della zona di miscelazione in aria	∂air	2	2	m	0
Estensione della sorgente nella direzione principale del vento	W'	45	163	m	0
Estensione della sorgente nella direzione ortogonale a quella del vento	Sw'	45	290	m	0
S	uolo Superficial	e		-/-	
Profondità del top della sorgente nel suolo superficiale rispetto al p.c.	Ls,SS	0	0	m	0
Spessore della sorgente nel suolo superficiale insaturo	d	1	1	m	0
	Suolo Profondo	ř.	——————————————————————————————————————		
Profondità del top della sorgente nel suolo profondo rispetto al p.c.	Ls,SP	1	1	m	0
Spessore della sorgente nel suolo profondo insaturo	ds	2	2	m	0
Soggiacenza della falda da p.c.	Lgw	3	2.71	m	0

Parametri del sito - Zona Insatura

Descrizione		Valore			
Parametro	Simbolo	Default	Sito-Specifico	UM	check
	Zona Insatura	ı			
Tessitura rappresentativa del suc	olo insaturo	,	Sar	ıdy Loam	
Porosità efficace del terreno in zona insatura	θе	Letteratura	0.345		0
Contenuto volumetrico di acqua nel suolo	θw	Letteratura	0.194	(+)	0
Contenuto volumetrico di aria nel suolo	θа	Letteratura	0.151	120	0
Contenuto volumetrico di acqua nella frangia capillare	Өw,сар	Letteratura	0.288	158	0
Contenuto volumetrico di aria nella frangia capillare	θа,сар	Letteratura	0.057	-	0
Spessore della frangia capillare	hcap	Letteratura	0.25	m	0
Carico idraulico critico (potenziale di matrice)	her	Letteratura	-0.0848	m	0
Conducibilità idraulica del terreno nella zona insatura	Ksat	Letteratura	1.23e-5	m	0
Battente idrico in superficie	Hw	0.25	0.25	m	0
Densità del suolo	ρs	1.7	1.7	g/cm³	0
pH del suolo	pH	6.8	8	-	0
Frazione di carbonio organico - suolo superficiale	foc,SS	0.01	0.01	g/g	0
Frazione di carbonio organico - suolo profondo	foc,SP	0.01	0.01	g/g	0
Frazione residua dei pori nel suolo (per calcolo Cres)	Sr	0.04	0.04	m	0
Spessore della zona insatura	hv	Calcolato	2.460	m	0
	Infiltrazione efficace o	calcolata		-	
Piovosità media annua	P	129	41.4	cm/y	0
Frazione areale di fratture outdoor	ηout	1	1	cm/y	0
Infiltrazione efficace nel suolo	lef	Calcolato	3.08	cm/y	0
Spessore della zona di miscelazione in falda	δgw	Calcolato	5.00	m	no chec
Fattore di diluizione in falda	LDF	Calcolato	3.17	121	no chec

Nome del sito: EX DISCARICA FOSSO GRANDE (PE 210021 SORGENTE A S9 REV ARTA) - Compilato da: BRANDELLI, Data: undefined

Parametri del sito - Zona Satura

Descrizione			Valore					
Parametro	Simbolo	Default	Sito-Specifico	UM	check			
	Zona Satu	Zona Satura						
Tessitura rappresentativa del suolo sa		Sito-	specifico					
Conducibilità idraulica del terreno saturo	Ksat	Letteratura	7.90e-5	m/s	0			
Porosità efficace del terreno in zona satura	θe,sat	Letteratura	0.353	-	0			
Spessore acquifero	da	2	5	m	0			
Gradiente idraulico	i	0.01	0.01	m/m	0			
Velocità di Darcy	vgw	Calcolato	7.90e-7	m/s	0			
Velocità media effettiva nella falda	ve	Calcolato	2.24e-6	-	0			
Frazione di carbonio organico - suolo saturo	foc,sat	0.001	0.001	g/g	0			
Frazione residua dei pori nel suolo saturo (per calcolo Cres)	Sr	0.04	0.04	g/g	0			
Distanza punto di conformità in falda	POC	100	200	m	0			
Dispersività longitudinale in falda	ax	Calcolato	20.00	m	0			
Dispersività trasversale in falda	ay	Calcolato	6.67	m	0			
Dispersività verticale in falda	az	Calcolato	1.00	m	0			

Nome del sito: EX DISCARICA FOSSO GRANDE (PE 210021 SORGENTE A S9 REV ARTA) - Compilato da: BRANDELLI, Data: undefined

Parametri del sito - Outdoor

Descrizione		Valore					
Parametro	Simbolo	Default	Sito-Specifico	UM	check		
	Outdoor						
Velocità del vento	Uair	2.25	1.44	m/s	0		
Portata di particolato per unità di superficie	De	6 9e-14	6 9e-14	g/cm/s²	②		
Distanza recettore off site - ADF	POC ADF	100	8	m	0		
Classe di Stabilità Atmosferica			Sito-	specifico			
Coefficiente di dispersione trasversale	σу	10	10	m	0		
Coefficiente di dispersione verticale	σz	10	10	m	0		
Profondità della zona aerobica da p.c.	La Outdoor	1	1	m	0		

Le concentrazioni rappresentative della sorgente sono esattamente i contaminanti riscontrati nel piezometro ripristinato S9. Per il parametro Idrocarburi totali (espressi come n-esano) per l'elaborazione dell'analisi di rischio, cautelativamente è stata attribuita alla classe Alifatici C9-C12 (nelle precedenti versioni Risknet frazione C9- C18) tutta la frazione di idrocarburi sino a C12, mentre è stata attribuita la restante parte degli idrocarburi alla classe Alifatici C19- C36 come da specifica a pg. 22.

La valutazione del rischio diretto è fatta senza il taglio alla concentrazione di saturazione.

Nome del sito: EX DISCARICA FOSSO GRANDE (PE 210021 SORGENTE A S9 REV ARTA) - Compilato da: BRANDELLI, Data: undefined

CRS

Contaminante	Suolo Superficiale	Suolo Profondo	Falda	Eluato da suolo superficiale	Eluato da suolo profondo	Soil-gas Outdoor	Soil-gas Indoor	Flux Chamber (outdoor)	Flux Chamber (indoor)	Aria Outdoor	Aria Indoor
-	mg/kg	mg/kg	μg/L	μg/L	μg/L	mg/m³	mg/m³	mg/m³	mg/m³	mg/m³	mg/m³
Alluminio	-	-	3.55e+3	-	-	-	-	-	-	-	-
Antimonio	-	-	2.30e+1	-	-	-	-	-	-	-	-
Arsenico	-	-	5.40e+1	-	-	-	-	-	-	-	-
Cromo totale	-	-	1.79e+3	-	-	-	-	-	-	-	-
Ferro	-	-	2.28e+4	-	-	-	-	-	-	-	-
Nichel	-	-	2.97e+2	-	-	-	-	-	-	-	-
Piombo	-	-	7.30e+1	-	-	-	-	-	-	-	-
Manganese		-	4.75e+2	-	-	-	-	-	-	-	-
Boro	-	-	3.45e+4	-	-	-	-	-	-	-	-
Nitriti	-	-	8.13e+2	-	-	-	-	-	-	-	-
Toluene	-	-	6.00e+1	-	-	-	-	-	-	-	-
p-Xilene		-	2.10e+1	-	-	-	-	-	-	-	-
Benzo(a)pirene	-	-	2.50e+2	-	1	-	-	-	-	-	-
Benzo(g,h,i)perilene	-	-	1.30e+2		-	-	-	-	-	-	-
Cloruro di vinile	-	-	1.48e+1		-	-	-	-	-	-	-
Dicloropropano (1,2)	-	-	4.15e+0		•	-	-	-	-	-	-
Alifatici C9-C12	-	-	1.32e+3	-	•	-	-	-	-	-	-
Alifatici C19-C36	-	-	6.11e+3	-	-	-	-	-	-	-	-
Cadmio	-	-	1.13e+1	-	-	-	-	-	-	-	-
Selenio	-	-	4.20e+1	-	-	-	-	-	-	-	-

Rischio dalla Falda

Contaminante	CRS	f	CRS/f	Sol	R (HH)	HI (HH)	Rgw (GW)
-	μg/L	-	μg/L	μg/L	-	-	-
Alluminio	3.55e+3		3.55e+3	-	-	-	1.78e+1
Antimonio	2.30e+1		2.30e+1	-	-	-	4.60e+0
Arsenico	5.40e+1		5.40e+1	-	-	-	5.40e+0
Cromo totale	1.79e+3		1.79e+3	-	-	-	3.58e+1
Ferro	2.28e+4		2.28e+4	-	-	-	1.14e+2
Nichel	2.97e+2		2.97e+2	-	-	-	1.48e+1
Piombo	7.30e+1		7.30e+1	-	-	-	7.30e+0
Manganese	4.75e+2		4.75e+2	-	-	-	9.50e+0
Boro	3.45e+4		3.45e+4	-	-	-	3.45e+1
Nitriti	8.13e+2		8.13e+2	-	-	-	1.63e+0
Toluene	6.00e+1		6.00e+1	5.26e+5	-	2.56e-6	4.00e+0
p-Xilene	2.10e+1		2.10e+1	1.62e+5	-	4.09e-5	2.10e+0
Benzo(a)pirene	2.50e+2		2.50e+2	1.62e+0	-	-	2.50e+4
Benzo(g,h,i)perilene	1.30e+2		1.30e+2	2.60e-1	-	-	1.30e+4
Cloruro di vinile	1.48e+1		1.48e+1	8.80e+6	3.93e-8	1.74e-4	2.96e+1
Dicloropropano (1,2)	4.15e+0		4.15e+0	2.80e+6	6.17e-10	9.73e-5	2.77e+1
Alifatici C9-C12	1.32e+3		1.32e+3	1.00e+1	-	3.02e-1	3.77e+0
Alifatici C19-C36	6.11e+3		6.11e+3	1.50e-3	-	-	1.75e+1
Cadmio	1.13e+1		1.13e+1	-	-	-	2.26e+0
Selenio	4.20e+1		4.20e+1	-	-	-	4.20e+0
Cumulato Outdoor (On-site)					4.00e-8	3.03e-1	
Cumulato Indoor (On-site)					-	-	
Cumulato ingestione di acqua (On-site)					-	-	
Cumulato Outdoor (Off-site)					4.00e-8	3.03e-1	
Cumulato Indoor (Off-site)					-	-	
Cumulato ingestione di acqua (Off-site)		Diele met 6	3.1.1 Pro (Pag	10 (00)	-	-	

Allo stato attuale non sussiste rischio sanitario per l'uso del sito, anche ricreativo on site e residenziale off - site, ma sussiste rischio per la falda.

In particolare si ritiene necessario indagare l'estensione del plume del S9 e la qualità delle acque in area esterna alla discarica, in monte idraulico e, nel caso, valutare una protezione della falda.

Si evidenzia che il punto S9 ricade nell'area su cui insisterebbe – secondo le tavole del collaudo della bonifica 1999-2000 - il drenaggio del percolato, ed è particolarmente inaccessibile per i mezzi d'opera, che dovrebbero operare dal Fosso, al fine di una rimozione o ripristino di un sistema di impermeabilizzazione.

Si riporta il calcolo delle CSR falda per gli idrocarburi: la classe critica C9- C12 deve essere pari alla CSC.

CSR Idrocarburi (MADEP) per la Falda

Contaminante	CRS		Frazione		Sol	CSR (HH)		CSR/fr (HH)	CSR (GW)	(CSR/fr (GW)
		C<12	C>12	TOT			C<12	C>12	TOT		C<12	C>12	TOT
-	μg/L	12)	-	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Alifatici C9-C12	1.32e+3	1.00	- 50	0.18	1.00e+1	878	85	. 5	(#1)	3.50e+2	3.50e+2	-	1.97e+3
Alifatici C19-C36	6.11e+3	lā.	1.00	0.82	1.50e-3	150	6	8	953	3.50e+2	9538	3.50e+2	4.26e+2
	Fra	zione Criti	ica			CSR (HH)	12		-	CSR (GW)	3.50e+2	3.50e+2	4.26e+2

8. RISULTATI DELL'ANALISI DI RISCHIO LIVELLO 2 AREA B

Nella zona B il modello concettuale è caratterizzato da superamenti in falda e superamenti nel terreno, sia superficiale che insaturo profondo. Nel set dei superamenti è introdotto il superamento del parametro Zinco rilevato da ARTA nel terreno e sono considerati i dati peggiori nella falda fra dati di parte e dati di ARTA.

Modello Concettuale del Sito

Recettori on-site: Adulti e Bambini (Adjusted) Recettori off-site: Adulti e Bambini (Adjusted)

Parametri del sito - Zona Insatura

Descrizione		Valore			
Parametro	Simbolo	Default	Sito-Specifico	UM	check
	Zona Insatura	i e			
Tessitura rappresentativa del suc	olo insaturo		San	dy Loam	5
Porosità efficace del terreno in zona insatura	θе	Letteratura	0.345	12	0
Contenuto volumetrico di acqua nel suolo	θw	Letteratura	0.194	5	0
Contenuto volumetrico di aria nel suolo	θа	Letteratura	0.151	-	0
Contenuto volumetrico di acqua nella frangia capillare	θw,сар	Letteratura	0.288	8	0
Contenuto volumetrico di aria nella frangia capillare	θа,сар	Letteratura	0.057	5	0
Spessore della frangia capillare	hcap	Letteratura	0.25	m	0
Carico idraulico critico (potenziale di matrice)	her	Letteratura	-0.0848	m	0
Conducibilità idraulica del terreno nella zona insatura	Ksat	Letteratura	1.23e-5	m	0
Battente idrico in superficie	Hw	0.25	0.25	m	0
Densità del suolo	ps	1.7	1.7	g/cm³	0
pH del suolo	pН	6.8	8	-	0
Frazione di carbonio organico - suolo superficiale	foc,SS	0.01	0.01	g/g	0
Frazione di carbonio organico - suolo profondo	foc,SP	0.01	0.01	g/g	0
Frazione residua dei pori nel suolo (per calcolo Cres)	Sr	0.04	0.04	m	0
Spessore della zona insatura	hv	Calcolato	0.900	m	0
	Infiltrazione efficace o	calcolata	of.	*	
Piovosità media annua	Р	129	41.4	cm/y	0
Frazione areale di fratture outdoor	ηout	1	1	cm/y	0
Infiltrazione efficace nel suolo	lef	Calcolato	3.08	cm/y	0
Spessore della zona di miscelazione in falda	δgw	Calcolato	5.00	m	no check
Fattore di diluizione in falda	LDF	Calcolato	1.99		no check

Parametri del sito - Zona Satura

Descrizione			Valore		
Parametro	Simbolo	Default	Sito-Specifico	UM	check
	Zona Satura			*	
Tessitura rappresentativa del suolo	o saturo		San	ıdy Loam	
Conducibilità idraulica del terreno saturo	Ksat	Letteratura	1.23e-5	m/s	0
Porosità efficace del terreno in zona satura	θe,sat	Letteratura	0.345	958	0
Spessore acquifero	da	2	5	m	0
Gradiente idraulico	i i	0.01	0.01	m/m	0
Velocità di Darcy	vgw	Calcolato	1.23e-7	m/s	0
Velocità media effettiva nella falda	ve	Calcolato	3.57e-7	-	0
Frazione di carbonio organico - suolo saturo	foc,sat	0.001	0.001	g/g	0
Frazione residua dei pori nel suolo saturo (per calcolo Cres)	Sr	0.04	0.04	g/g	0
Distanza punto di conformità in falda	POC	100	0.1	m	0
Dispersività longitudinale in falda	ax	Calcolato	1.00e-2	m	0
Dispersività trasversale in falda	ay	Calcolato	3.33e-3	m	0
Dispersività verticale in falda	az	Calcolato	5.00e-4	m	0

Non si dispone di speciazione per il picco di contaminazione da idrocarburi riscontrato nel piezometro s₄. Per i terreni si attribuisce l'intera concentrazione alla classe critica per lisciviazione/volatilizzazione da suolo Aromatici C 1₃- C₂₂, atteso che il superamento è ascrivile a idrocarburi pesanti con C>1₂.

Nome del sito: EX DISCARICA FOSSO GRANDE (PE 210021 - SORGENTE B DOPO ARTA) - Compilato da: BRANDELLI, Data: FEBBRAIO 2022

CRS

Contaminante	Suolo Superficiale	Suolo Profondo	Falda	Eluato da suolo superficiale	Eluato da auolo profondo	Soil-gas Outdoor	Soil-gas Indoor	Flux Chamber (outdoor)	Flux Chamber (indoor)	Aria Outdoor	Aria Indoor
	mg/kg	mg/kg	μg/L	μg/L	μg/L	mg/m³	mg/m³	mg/m³	mg/m³	mg/m³	mg/m³
Arsenico			4.08e+1	-	-	-	-	-	-	-	-
Ferro			6.65e+3	-	-	-	-	-	-	-	-
Nichel			1.16e+2	-	-	-	-	-	-	-	-
Manganese			1.65e+3	-	-	-	-	-	-	-	-
Boro			2.03e+3	-	-	-	-	-	-	-	-
Nitriti			1.89e+3	-	-	-	-	-	-	-	-
Dicloropropano (1,2)			5.20e-1	-	-	-	-	-	-	-	-
Alifatici C9-C12			9.79e+2	-	-	-	-	-	-	-	-
Aromatici C11-C12	4.48e+2	9.00e+1	-	-	-	-	-	-	-	-	-
Zinco	-	1.95e+2	-	-	-	-	-	-	-	-	-
Alifatici C19-C36			-	-	-	-	-	-	-	-	-

Le dimensioni delle sorgenti diverse fra terreno e falda.

Parametri del sito - Geometria Sorgenti

Descrizione			Valore		
Parametro	Simbolo	Default	Sito-Specifico	UM	check
G	eometria Sorgei	nti	44		
S	uolo Superficia	le	-30	Ar.	
Profondità del top della sorgente nel suolo superficiale rispetto al p.c.	Ls,SS	0	0	m	0
Spessore della sorgente nel suolo superficiale insaturo	d	1	1	m	0
Estensione della sorgente nella direzione del flusso di falda	W	45	635	m	0
Estensione della sorgente nella direzione ortogonale al flusso di falda	Sw	45	181	m	0
Altezza della zona di miscelazione in aria	ðair	2	2	m	0
Estensione della sorgente nella direzione principale del vento	W°	45	100	m	0
Estensione della sorgente nella direzione ortogonale a quella del vento	Sw'	45	50	m	0
	Suolo Profondo				
Profondità del top della sorgente nel suolo profondo rispetto al p.c.	Ls,SP	1	1	m	0
Spessore della sorgente nel suolo profondo insaturo	ds	2	0.15	m	0
Estensione della sorgente nella direzione del flusso di falda	W	45	100	m	0
Estensione della sorgente nella direzione ortogonale al flusso di falda	Sw	45	50	m	0
Altezza della zona di miscelazione in aria	ðair	2	2	m	0
Estensione della sorgente nella direzione principale del vento	W'	45	181	m	0
Estensione della sorgente nella direzione ortogonale a quella del vento	Sw'	45	635	m	0
	Falda				
Soggiacenza della falda da p.c.	Lgw	3	1.15	m	0
Estensione della sorgente nella direzione del flusso di falda	w	45	635	m	0
Estensione della sorgente nella direzione ortogonale al flusso di falda	Sw	45	181	m	0
Altezza della zona di miscelazione in aria	ðair	2	2	m	0
Estensione della sorgente nella direzione principale del vento	W ^c	45	181	m	0
Estensione della sorgente nella direzione ortogonale a quella del vento	Sw'	45	635	m	0

Il POC è a ridosso della sorgente: quest'area comprende il secondo corpo della discarica.

Nome del sito: EX DISCARICA FOSSO GRANDE (PE 210021 - SORGENTE B DOPO ARTA) - Compilato da: BRANDELLI, Data: FEBBRAIO 2022

Parametri del sito - Outdoor

Descrizione		Valore						
Parametro	Simbolo	Default	Sito-Specifico	UM	check			
	Outdoor							
Velocità del vento	Uair	2.25	1.44	m/s	0			
Portata di particolato per unità di superficie	Pe	6.9e-14	6.9e-14	a/cm/s²	0			
Distanza recettore off site - ADF	POC ADF	100	4	m	0			
olasse di stabilità Atmosferica			Onto-	эрестьо				
Coefficiente di dispersione trasversale	σу	10	10	m	0			
Coefficiente di dispersione verticale	σz	10	10	m	0			
Profondità della zona aerobica da p.c.	La Outdoor	1	1	m	0			

Nome del sito: EX DISCARICA FOSSO GRANDE (PE 210021 - SORGENTE B DOPO ARTA) - Compilato da: BRANDELLI, Data: FEBBRAIO 2022

Rischio da Suolo Superficiale

Contaminante	CRS	f	CRS/f	Csat	Cres	R (HH)	HI (HH)	Rgw (GW)
-	mg/kg	-	mg/kg	mg/kg	mg/kg	-	-	-
Arsenico			-	-	-	-	-	-
Ferro			-	-	-	-	-	-
Nichel			-	-	-	-	-	-
Manganese			-	-	-	-	-	-
Boro			-	-	-	-	-	-
Nitriti			-	-	-	-	-	-
Dicloropropano (1,2)			-	2.05e+3	1.15e+4	-	-	-
Alifatici C9-C12			-	6.81e+1	6.81e+1	-	-	-
Aromatici C11-C12	4.48e+2		4.48e+2	2.91e+2	2.91e+2	-	5.81e-1	1.12e+1
Zinco	-		-	-	-	-	-	-
Alifatici C19-C36			-	5.97e+0	5.97e+0	-	-	-
Cumulato Outdoor (On-site)						-	5.81e-1	
Cumulato Indoor (On-site)						-	-	
Cumulato ingestione di acqua (On-site)						-	-	
Cumulato Outdoor (Off-site)						-	6.69e-2	
Cumulato ingestione di acqua (Off-site)						-	-	

Nome del sito: EX DISCARICA FOSSO GRANDE (PE 210021 - SORGENTE B DOPO ARTA) - Compilato da: BRANDELLI, Data: FEBBRAIO 2022

Rischio da Suolo Profondo

Contaminante	CRS	f	CRS/f	Csat	Cres	R (HH)	HI (HH)	Rgw (GW)
-	mg/kg	-	mg/kg	mg/kg	mg/kg	-	-	-
Arsenico			-	-	-	-	-	-
Ferro			-	-	-	-	-	-
Nichel			-	-	-	-	-	-
Manganese			-	-	-	-	-	-
Boro			-	-	-	-	-	-
Nitriti			-	-	-	-	-	-
Dicloropropano (1,2)			-	2.05e+3	1.15e+4	-	-	-
Alifatici C9-C12			-	6.81e+1	6.81e+1	-	-	-
Aromatici C11-C12	9.00e+1		9.00e+1	2.91e+2	2.91e+2	-	1.22e-2	7.04e-1
Zinco	1.95e+2		1.95e+2	-	-	-	-	1.68e-2
Alifatici C19-C36			-	5.97e+0	5.97e+0	-	-	-
Cumulato Outdoor (On-site)						-	1.22e-2	
Cumulato Indoor (On-site)						-	-	
Cumulato ingestione di acqua (On-site)						-	-	
Cumulato Outdoor (Off-site)						-	1.22e-2	
Cumulato ingestione di acqua (Off-site)						-	-	

Nome del sito: EX DISCARICA FOSSO GRANDE (PE 210021 - SORGENTE B DOPO ARTA) - Compilato da: BRANDELLI, Data: FEBBRAIO 2022

Rischio dalla Falda

Contaminante	CRS	f	CRS/f	Sol	R (HH)	HI (HH)	Rgw (GW)
-	μg/L	•	μg/L	μg/L	•	-	-
Arsenico	4.08e+1		4.08e+1	-	-	-	4.08e+0
Ferro	6.65e+3		6.65e+3	-	-	-	3.33e+1
Nichel	1.16e+2		1.16e+2	-	-	-	5.80e+0
Manganese	1.65e+3		1.65e+3	-	-	-	3.30e+1
Boro	2.03e+3		2.03e+3	-	-	-	2.03e+0
Nitriti	1.89e+3		1.89e+3	-	-	-	3.78e+0
Dicloropropano (1,2)	5.20e-1		5.20e-1	2.80e+6	1.08e-10	1.70e-5	3.47e+0
Alifatici C9-C12	9.79e+2		9.79e+2	1.00e+1	-	3.02e-1	2.80e+0
Aromatici C11-C12	-		-	5.80e+3	-	-	-
Zinco	-		-	-	-	-	-
Alifatici C19-C36	-		-	1.50e-3	-	-	-
Cumulato Outdoor (On-site)					1.08e-10	3.02e-1	
Cumulato Indoor (On-site)					-	-	
Cumulato ingestione di acqua (On-site)					-	-	
Cumulato Outdoor (Off-site)					1.08e-10	3.02e-1	
Cumulato Indoor (Off-site)					-	-	
Cumulato ingestione di acqua (Off-site)					-	-	

Nemmeno nell'area B sussiste rischio sanitario, ma sussiste rischio per la falda acquifera da arsenico, ferro, nichel, manganese, boro, nitriti, dicloropropano, alifatici C9- C12.

Il rischio per la falda da lisciviazione del suolo insaturo superficiale dipende dall'assunzione cautelativa di attribuire, in mancanza di un dettaglio di speciazione, tutta la concentrazione rilevata alla classe critica per la lisciviazione da suolo idrocarburi aromatici C13- C22 (C11- C22 nella vecchia release), tenendo anche conto che si tratta comunque di idrocarburi pesanti, con C > 12. Anche l'assunzione di attribuire tutta la concentrazione di idrocarburi rilevata

in falda alla frazione critica alifatici C9 – C12 è estremamente conservativa e non supportata da evidenze di campo: la concentrazione di $979~\mu g/L$ tutta attribuita alla frazione critica supera la concentrazione di saturazione e non ci sono emergenze organolettiche di prodotto separato. Nel report sono calcolate le CSR cumulate per il suolo superficiale insaturo e profondo insaturo sugli idrocarburi per non avere effetto di lisciviazione in falda.

Si segnala l'inapplicabilità al caso di studio del software <u>Leach8</u> (distribuito dalla RECONnet, *Rete Nazionale sulla gestione e la Bonifica dei Siti Contaminati*), sviluppato con l'obiettivo di fornire uno strumento che permetta di applicare la procedura di Analisi di Rischio alle discariche in esercizio e che si basa su una serie di dati noti sulla produzione di percolato, che per questo sito – dismesso e già sottoposto a bonifica e rinaturalizzazione – non sono disponibili. Per la discarica RSU, di dimensioni particolarmente importanti ed utilizzata in maniera incontrollata, non è stato possibile definire con certezza le informazioni generali, le diverse caratteristiche della discarica e la parametrizzazione riguardo il percolato in uscita dalla discarica. Tali dati di input essenziali risultano fondamentali sia in modalità *backward*, per il calcolo della concentrazione ammissibile in discarica, a partire dalla concentrazione accettabile nelle acque sotterranee e dal fattore di lisciviazione sito-specifico calcolato in funzione delle caratteristiche definite dall'utente, che in modalità *forward* per il calcolo della concentrazione attesa in falda al Punto di Conformità (POC) a partire dalla concentrazione misurata in discarica e in funzione delle caratteristiche definite dall'utente.

In conclusione, apportando le tre modifiche introdotte da ARTA sul calcolo del rischio sanitario, ovvero

- Introduzione dei dati peggiori su terreni e acque sotterranee, in particolare con riferimento al cloruro di vinile rilevato nel piezonetro S9
- 2. Riduzione della distanza dal POC nella sorgente A S9 da 600 a 200 metri,
- 3. riduzione della distanza dei recettori off site, esposti agli effetti di volatilizzaione da falda, da 100 a 8 metri nella sorgente AS9 e 4 metri nella sorgente B, anche con ipotesi di recettori residenziali e tempi di esposizione indoor/outdoor di default per l'uso residenziale,

è verificata l'accettabilità del rischio sanitario.

9. INTERVENTI DI MESSA IN SICUREZZA EFFETTUATI IN SITO

Nel mese di Dicembre 2020, quale intervento di messa in sicurezza, è stato effettuato lo svuotamento con auto spurgo (ditta incaricata Pavind - Servizi Ambientali), delle cisterne interrate poste lungo il tratto perimetrale meridionale dei due corpi di discarica (cfr. paragrafo precedente). I liquidi emunti (per complessive 34,61 t) sono stati inviati a smaltimento presso un impianto autorizzato (i relativi Formulari di Identificazione del Rifiuto sono

riportati in allegato). Nel corso dell'intervento si è constatato che i manufatti denominati e 2 (cfr. figura paragrafo precedente) sono presumibilmente tra loro collegati in quanto a seguito svuotamento della cisterna n.1 è stato osservato un abbassamento del livello del liquido contenuto nel manufatto 2, rispetto alla quota iniziale (entrambe le cisterne sono state comunque svuotate completamente). Per quanto riguarda i manufatti denominati 3 e 4, durante le operazioni di aspirazione, non è stato registrato un calo duraturo dei livelli dei liquidi in quanto gli stessi tendevano a risalire molto velocemente per cui non è stato possibile effettuare il totale svuotamento delle cisterne.

10. CONCLUSIONI CON INDICAZIONE DELLE ATTIVITA' PROPOSTE AI FINI DELLA PROGETTAZIONE
DEGLI INTERVENTI DI BONIFICA/MESSA IN SICUREZZA DEFINITIVI E INTEGRAZIONE DELLE
PRESCRIZIONI DI MONITORAGGIO

Per i contaminanti considerati **non risulta verificata l'accettabilità del rischio per la risorsa idrica sotterranea:** *RGW* > 1. Pertanto è necessario intervenire con una bonifica/messa in sicurezza permanente.

Come misure da mettere in campo, in attesa della BONIFICA/MESSA IN SICUREZZA DEFINITIVA si propone quanto segue:

- verifica della possibilità di realizzazione di due ulteriori nuovi punti di monitoraggio della falda nel settore meridionale della discarica, in adesione alle indicazioni di ARTA, da ubicare sulla base di criteri di fattibilità e in contraddittorio con ARTA con censimento di eventuali pozzi a monte del sondaggio S9 o eventuale realizzazione di un ulteriore bianco di monte.
- nuovo monitoraggio delle acque sotterranee sulla rete piezometrica incrementata, al fine di confermare la stabilità dei risultati dell'analisi di rischio, anche in adesione alle prescrizioni rimesse dalla Regione in seno alla Conferenza dei servizi
- conservazione nel set di monitoraggio delle acque sotterranee, oltre a tutti i parametri di superamento,
 anche del parametro Zinco
- 4. **monitoraggio soilgas** per la ricostruzione/mappatura e verifica di efficienza del sistema di estrazione biogas su tutta la cintura perimetrale monitoraggio e quantificazione delle emissioni diffuse (CO2, CH4) all'interfaccia suolo-atmosfera anche in adesione alle prescrizioni rimesse dalla Regione in seno alla Conferenza dei servizi. In relazione alla ulteriore prescrizione di ARTA, della installazione di un adeguato numero di sonde di soilgas in prossimità delle abitazioni per verificare l'eventuale migrazione di vapori all'esterno del sito e l'intrusione indoor come da LG SNPA 15/18 e 17/18, visti i risultati dell'Analisi di rischio

come revisionata per i recettori indoor off site, si propone di rivalutarne l'opportunità di realizzazione all'esito del previsto monitoraggio con camera di flusso on site.

- 4. **campionamento sedimenti** e acque superficiali su tre sezioni: in corrispondenza della briglia di attraversamento del manufatto di contenimento liquani, a monte e a valle nel senso del deflusso idrico sotterraneo dell'intero corpo di discarica, anche in adesione alle indicazioni della ASL.
- 5. mappatura mediante video-ispezione e verifica di integrità e tenuta sia del sistema di regimazione delle acque di corrivazione che dei manufatti di raccolta del percolato. Questo intervento punta alla ricostruzione puntuale e verifica di efficienza del sistema di drenaggio del percolato e ricostruzione e verifica di efficienza del sistema di drenaggio delle acque di corrivazione;
- 6. ulteriore svuotamento cisterne interrate;
- 7. ripristino pozzetto ubicato nelle vicinanze della cisterna 5.

ing. Giovanna BRANDELLI