Complesso Residenziale "I Trabocchi"

Via A.Doria (angolo via Bardet) - Pescara

Committente: COSTANTINI COSTRUZIONI Srl

ANALISI DI RISCHIO SITO SPECIFICA

art. 242, all. 1 al TITOLO V, PARTE IV del D.Lgs. 152/06 e s.m.i.

ANALISI DI RISCHIO SITO SPECIFICA

INDICE

1.	PREMESSA	3
2.	EXCURSUS DEL PROCEDIMENTO FIN ORA SVOLTO	4
3.	NORMATIVA DI RIFERIMENTO	5
4.	DESCRIZIONE DEL SITO	6
4.1.	INQUADRAMENTO DEL SITO	6
4.2.	INDIVIDUAZIONE DEL SITO E DESTINAZIONE URBANISTICA	7
5.	CARATTERISTICHE GEOLOGICHE ED IDROGEOLOGICHE	8
6.	ATTIVITÀ DI INDAGINE SVOLTE NELL'AMBITO DEL PIANO DI	
	CARATTERIZZAZIONE	10
7.	ESITI DELLE INDAGINI	11
7.1.	Profondità indagini e quota falda	11
7.2.	Analisi di laboratorio	11
8.	ANALISI DI RISCHIO DI PRIMO LIVELLO	12
8.1.	Terreno	12
8.2.	Acque sotterranee	12
9.	MODELLO CONCETTUALE DEL SITO	13
10.	ANALISI DI RISCHIO DI SECONDO LIVELLO (SITO SPECIFICA)	13
10.1.	SOFTWARE UTILIZZATO	13
10.2.	TIPOLOGIA DI SIMULAZIONE	13
10.3.	Modello concettuale del sito	14
10.4.	PARAMETRI CHIMICO-FISICI E TOSSICOLOGICI OGGETTO DELL'ADR	15
10.5.	CARATTERISTICHE DEL SITO E DELLA SORGENTE	16
10.6.	RIEPILOGO DATI DI IMPUT	22
10.7.	RISULTATI ANALISI DI RISCHIO	26
10.8.	ESITI ANALISI DI RISCHIO	30
11.	ORIGINE ESTERNA NELLA CONTAMINAZIONE DELLA FALDA	30
12.	CONCLUSIONI	32
13.	ELENCO ALLEGATI	33

1. PREMESSA

Il presente studio, redatto su incarico del dr. Alessandro Costantini, Legale Rappresentate della Costantini Costruzioni srl, ha per oggetto di valutazione il sito ubicato in via A.Doria (angolo via Bardet) – Pescara presso il quale la ditta ha in corso di realizzazione il complesso residenziale denominato "I Trabocchi".

Per tale sito, inserito nell'anagrafe regionale dei siti a rischio potenziale di inquinamento con Scheda PE900044 (rif.normativo DGR n. 137 del 03.03.2014 – rif. Nota ARTA prot.n. 574/SCPE-SC del 28.01.2011), è stato attivato il procedimento di cui all'art.242 del D.Lgs. 152/06 e s.m.i.

A seguito della realizzazione del Piano di Caratterizzazione e della trasmissione dei risultati delle prove svolte in contradditorio con ARTA, la Conferenza dei Servizi del 17.02.2017 ha ritenuto necessario dover effettuare l'<u>Analisi di Rischio sito specifica</u> (v.si allegato n.1- Verbale conferenza dei servizi del 17.02.2017), secondo i requisiti fissati all'Allegato 1 al TITOLO V della PARTE QUARTA del D.Lgs. 152/06 e s.m.i.

Le informazioni e i dati contenuti nella relazione sono stati forniti allo scrivente dal dr. Alessandro Costantini, in qualità di legale rappresentante della Ditta Costantini Costruzioni srl, il quale con la sottoscrizione del documento ne assume, per quanto di competenza, le responsabilità nei termini di legge.

2. EXCURSUS DEL PROCEDIMENTO FIN ORA SVOLTO

Di seguito si riepilogano i principali passaggi del procedimento in essere e si rimanda alla documentazione già in atti per un approfondimento dell'intero iter amministrativo.

In <u>ottobre-novembre 2010</u>, durante la realizzazione degli scavi necessari per la costruzione del complesso residenziale "I TRABOCCHI", è stato rinvenuto, al di sotto del piano campagna, uno stato di materiale bituminoso riconducibile con ogni probabilità ad una vecchia pavimentazione realizzata da precedente attività svolta, da altri, sullo stesso sito.

<u>In data 17.02.2011</u>, la ditta Costantini Costruzioni srl dopo avere effettuato la caratterizzazione del materiale bituminoso ha provveduto al suo regolare smaltimento, nei termini di legge,come rifiuto pericoloso attribuendo il codice CER 170301*.

Anche il terreno ubicato nell'intorno, che presentava visivamente residui di conglomerato bituminoso, è stato caratterizzato e avviato come rifiuto non pericoloso (CER 170504) presso un idoneo ed autorizzato impianto di smaltimento. La gestione della caratterizzazione dei rifiuti e il loro allontanamento verso impianti di smaltimento è avvenuta sotto la supervisione degli Agenti del Corpo Forestale dello Stato e dell'ARTA di Pescara. La stessa ARTA, poiché sul campione di terreno prelevato dal cumulo predisposto per essere smaltito è stata rinvenuta una concentrazione di idrocarburi C>12 pari a circa 1.500 mg/kg, ha ritenuto di inserire tale sito nell'anagrafe regionale dei siti a rischio potenziale di inquinamento con Scheda PE900044 (rif.normativo DGR n. 137 del 03.03.2014 – rif. Nota ARTA prot.n. 574/SCPE-SC del 28.01.2011).

<u>In data 03.06.2015</u>, a seguito della convocazione di alcuni tavoli tecnici dal parte del Comune di Pescara e dell'invio di documentazione avvenuto nel corso degli anni, il Sindaco di Pescara con atto prot.n. 266 ha imposto alla ditta di redigere un <u>Piano di Caratterizzazione Ambientale</u> secondo i requisiti fissati all'Allegato 2 al TITOLO V della PARTE QUARTA del D.Lgs. 152/06 e s.m.i.

In data 17.07.2015 la Costantini Costruzione srl ha inviato il Piano di Caratterizzazione.

In data <u>04.09.2015</u> si è svolta apposita Conferenza dei Servizi presso il Comune di Pescara.

In data <u>13.11.2015</u> il Comune, in riscontro alla nota del Costantini Costruzione srl del 09.11.2015, ha fornito alcuni chiarimenti e ha diffidato la ditta ad attivarsi immediatamente per l'invio dell'aggiornamento del Piano di Caratterizzazione.

In data <u>19.02.2016</u>, la ditta Costantini Costruzioni srl, a seguito di una serie di incontri tecnici avuti con ARTA, ha inviato il documento "AGGIORNAMENTO DEL PIANO DI CARATTERIZZAZIONE" datato 02.02.2016 con il quale si è integrato il piano di indagine previsto per la caratterizzazione del sito.

In data <u>13.04.2016</u>, in sede di Conferenza dei servizi, è stato approvato il piano di caratterizzazione così come aggiornato.

In data <u>11.01.2017</u>, la ditta Costantini Costruzione srl, ha trasmesso i Rapporti di Prova relativi alle indagini svolte in contradditorio con ARTA.

In data <u>17.02.2017</u> si è svolta apposita Conferenza dei Servizi che, sulla scorta dei risultati ottenuti dal Laboratorio LACI srl e dell'ARTA, ha ritenuto necessario procedere con l'effettuazione dell'Analisi di Rischio Sito Specifica(v.si allegato n.1- Verbale conferenza dei servizi).

3. NORMATIVA DI RIFERIMENTO

Per l'elaborazione dell'Analisi di Rischio si è fatto particolare riferimento ai seguenti dispositivi normativi e documenti tecnici:

- TITOLO V della PARTE QUARTA del D.Lgs.152/06 e s.m.i. e relativi allegati;
- "Criteri metodologici per l'applicazione dell'analisi assoluta di rischio ai siti contaminati" –
 APAT rev.2 del marzo 2008;
- "Documento di riferimento per la determinazione e la validazione dei parametri sito-specifici utilizzati nell'applicazione dell'analisi di rischio ai sensi del D.Lgs. 152/06" – APAT – rev. giugno 2008;
- Manuale n.196/I Edizione 2002 Suoli e falde contaminati Analisi di rischio sito-specifica –
 Criteri e parametri;
- Linee Guida APAT Manuale per le indagini ambientali nei siti contaminati (rif. manuale e linee quida 43/2006);

 Appendice V "Applicazione dell'analisi di rischio ai punti vendita carburante" APAT - giugno 2009.

Si è fatto inoltre riferimento al Manuale d'uso Software Risk-net, versione 2.1 – ottobre 2016 , RECONnet Rete Nazionale sulla gestione e la Bonifica dei Siti Contaminati.

4. DESCRIZIONE DEL SITO

4.1. INQUADRAMENTO DEL SITO

Il sito in oggetto è ubicato nel territorio della Città di Pescara in via A.Doria - angolo via Bardet (v.si allegato n.2 - Stralcio I.G.M).

Morfologicamente la zona risulta essere pianeggiante e distante dalla linee di costa circa 500-600 m.

L'area inoltre risulta prossima all'argine del fiume Pescara distante circa 45 m ed è costeggiata dal canale interrato artificiale denominato "Fosso Bardet" (v.si fig.1).

Il territorio su cui si inserisce il sito, appartiene al tessuto urbano della città e risulta essere in gran parte interessato da edifici e zone pavimentate alternate talvolta ad aiuole e giardini.

Fig.1 – Individuazione sito "I Trabocchi"

4.2. INDIVIDUAZIONE DEL SITO E DESTINAZIONE URBANISTICA

L'area oggetto del presente studio insiste sulle particelle catastali nn° 260, 2352 e 2353 del foglio di mappa n.27 del Comune di Pescara (v.si allegato 3 : Stralcio di mappa catastale) e ha una destinazione urbanistica "B₃ – Completamento e recupero" (v.si allegato 4 : Stralcio PRG).

Lo <u>scenario residenziale</u> è stato pertanto adottato sia per il confronto con le concentrazioni soglia di contaminazione (di seguito CSC) che per gli scenari di esposizione dell'analisi di rischio.

Il sito risulta attualmente recintato e l'immobile realizzato come da progetto (ad eccezione,così come verbalmente dichiarato allo scrivente, del locale tecnico la cui realizzazione deve essere ultimata) (allegato n.5 : Planimetria del sito).

La superficie complessiva dell'area è pari a c.a 1.330 m².

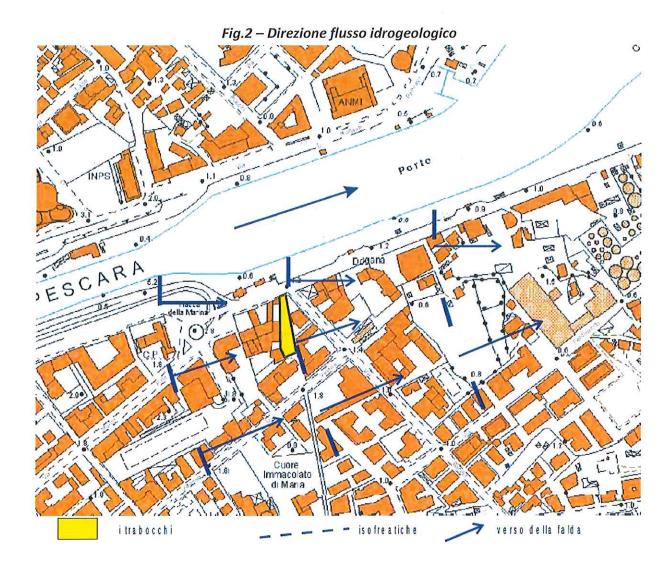
Si ritiene utile evidenziare che il sito è interessato dalla presenza, sul lato nord (verso mare) del fosso Bardet, uno "storico" canale di scolo interrato che raccoglie le acque superficiali e sotterranee di parte della zona sud della città di Pescara convogliandole nel fiume Pescara. Sul fosso Bardet e del diretto collegamento con il fiume Pescara si rinvia a quanto contenuto nella relazione geologica del dr. Oscar Moretti (v.si allegato n.6: Relazione del Geologo Dott. O.Moretti – Modello Idrogeologico).

5. CARATTERISTICHE GEOLOGICHE ED IDROGEOLOGICHE

Come descritto nella "Relazione Geologica" datata ottobre 2009 (v.si allegato n.6), e nel documento "Modello Idrogeologico" datato giugno 2015 (v.si allegato n.7), entrambi a firma del dott.Geol.O.Moretti, l'ambiente geologico di appartenenza è quello della piana di foce del Fiume Pescara, ancorché completamente urbanizzata e ad evoluzione morfologica bloccata.

In questa zona si trovano in commistione i depositi alluvionali e di spiaggia precedenti l'urbanizzazione e più in profondità la testimonianza dell'evoluzione dell'ambiente di foce e dei suoi sistemi palustri legati alla divagazione del canale defluente. Da tempo ormai il canale defluente è fisso e l'ambiente circostante omogeneizzato in un'unica piana urbana.

I rilievi stratigrafici svolti in ambito di progettazione hanno individuato nel sito una successione di terreni costituita da circa 10-12 m di sedimenti sabbiosi di taglia medio fine, malassortiti, di colore grigio-avana con inclusione di letti e lenti limose e livelli di ghiaietto minuto con resti di tritume conchigliare.


A seguire, e per una trentina di metri troviamo sedimenti fini o molto fini, a granulometria limo argillosa, di colore grigio, plastici, di consistenza molto bassa, con frequenti inclusioni di resti torbosi. In profondità il ciclo alluvionale si chiude con un banco ghiaioso di circa tre metri tra i 46 e i 49 m dal p.c. e sotto questo i depositi marini delle "argille" grigie.

In ragione di ciò il prisma sabbioso superficiale è caratterizzato da un'ottima permeabilità per porosità e ben si presta ad ospitare una falda di tipo freatico sostenuta dalle sottostanti alluvioni fini che pur sature hanno permeabilità e conducibilità troppo basse per consentire dinamicità all'acqua intergranulare.

Al netto dell'urbanizzazione, l'ambiente di foce costiera, con un'ampia piana alluvionale alle spalle e un'ampia fascia di spiaggia all'intorno, si caratterizza quindi per la presenza omogenea di una falda di subalveo. Più ci si avvicina alla costa più questa risulta sostenuta anche dal cuneo salino di ingressione marina.

La quota della falda superficiale in base alle indicazioni fornite dell'ARTA nella nota prot.n. 574/DIP del 28.01.2011 e da quanto affermato dal Geol.Moretti si trova tra 1 e 2 m di profondità dal p.c.

Considerando la differenza di quota tra il tetto della falda freatica e il pelo libero dell'acqua del vicino fiume Pescara che lascia presumere, seppure debolmente, un drenaggio dal fiume verso la falda, il Geol. Moretti ha ipotizzato un andamento delle isofreatiche sub-perpendicolare all'asta fluviale leggermente concavo verso monte con l'accentuazione in corrispondenza dell'argine del fiume così come riportato in figura seguente.

Per l'andamento idrogeologico, oltre al comportamento della falda di subalveo, il Geol.Dott.Moretti evidenzia possibili influenze del fosso BARDET presente a ridosso dell'area, del quale non si può garantire l'esatta funzionalità e tenuta.

6. ATTIVITÀ DI INDAGINE SVOLTE NELL'AMBITO DEL PIANO DI CARATTERIZZAZIONE

In base al piano di caratterizzazione approvato in sede di conferenza dei servizi sono state condotte le seguenti attività:

- In data <u>07.07.2016</u> sono stati realizzati n.3 sondaggi da attrezzare a piezometro, denominati S1, S2 e S3, disposti monte/valle rispetto la presunta direzione di falda indicata dal geologo (v.si § 5) (v.si figura 3);
 - Sono stati prelevati in contradditorio con i tecnici ARTA n. 3 campioni di terreno, uno per ciascun sondaggio, poiché la falda è stata rinvenuta entro i primi 2 metri ca dal p.c..
- In data <u>26.09.2016</u>, previa effettuazione delle operazioni di spurgo dei piezometri realizzati, sono stati prelevati in contradditorio con ARTA n. 3 tre campioni di acque sotterranee;
- In data <u>07.12.2016</u>, dai tre piezometri, sono stati prelevati n. 3 campioni di soil gas.

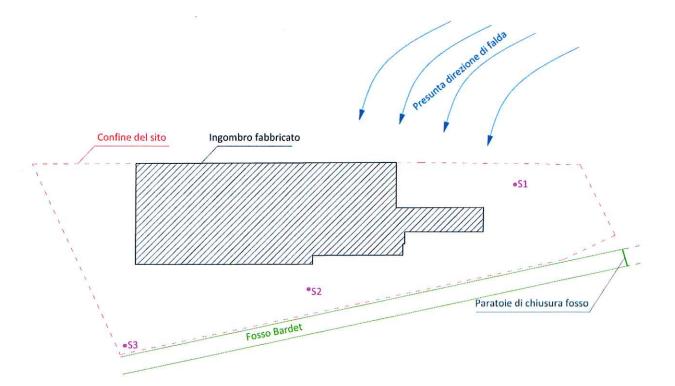


Fig.3 – Individuazione punti di sondaggio

Le attività geognostiche effettuate sono state descritte nella "Relazione Tecnica" datata luglio 2016 a firma del Dott.Geol.C.Palestini e Dott.Geol.A .Ricciardi della GEOSOIL (v.si allegato 8).

7. ESITI DELLE INDAGINI

7.1. Profondità indagini e quota falda

I sondaggi sono stati realizzati fino alla profondità di ca 9-10 m.

Le quote piezometriche sono state monitorate in occasione dei campionamenti e i valori misurati sono riportati in tabella seguente.

Tab. 1

Livello quota	piezometrica
26.09.2016	07.12.2016
m dal p.c.	m dal p.c.
-2,04	-2,44
-1,85	-2,2
-1,55	-1,9
	26.09.2016 m dal p.c2,04 -1,85

7.2. ANALISI DI LABORATORIO

A seguito delle operazioni di sondaggio sono stati prelevati complessivamente:

- n.3 campioni di terreno;
- n.3 campioni di acque sotterranee;
- n.3 campioni di soil gas.

Le aliquote prelevate sono state analizzate sia dal Laboratorio LACI srl di San Giovanni Teatino (CH) che dal laboratorio ARTA Distretto di Pescara.

Per l'analisi dei risultati ottenuti si rimanda alla consultazione della seguente documentazione:

- RP Laboratorio LACI srl (v.si allegato 9);
- RP Laboratorio ARTA Distretto di Pescara (v.si allegato 10).

8. ANALISI DI RISCHIO DI PRIMO LIVELLO

8.1. TERRENO

In base ai risultati ottenuti da entrambi i laboratori non ci sono superamenti delle CSC fissate dalla colonna A (sito ad uso verde pubblico, privato e residenziale) della Tab.1 Allegato 5 al Titolo V della Parte IV del D.Lgs. 152/06 e s.m.i. per la matrice terreno.

8.2. ACQUE SOTTERRANEE

Per le acque sotterranee <u>sono emersi superamenti per quanto attiene i parametri Arsenico, Ferro,</u>

<u>Manganese e Cloruro di vinile</u>.

Si riepilogano di seguito le concentrazione rilevati dai due laboratori nelle acque sotterranee relative a tali parametri evidenziando in verde i valori superiori ai limiti CSC previsti dalla Tab.2 All.5 Titolo V D.Lgs.152/06 e s.m.i..

Tab.2 - Superamenti Acque sotterranee

Piezom	etro		S1		S2		S3	LIMITI CSC
Certificato d	i Analisi LACI SRL		ARTA	LACI SRL	ARTA	LACI SRL	ARTA	D.Lgs. 152/06
Parametro	un. Misura	RdP 3601378	RdP PE/005398/16	RdP 3601379	RdP PE/005399/16	RdP 3601380	RdP PE/005400/16	tab. 2
Arsenico	μg/litro μg/litro	5,8	19,2	2,5	4,1	<1	1,0	10
Ferro		49,4	2588	25	531,9	<20	175,0	200
Manganese	μg/litro	691	789,6	343	379,0	206	178,0	50
Cloruro di vinile	μg/litro	<0,050	0,30	0,5	2,14	0,165	<0,1	0,5

9. MODELLO CONCETTUALE DEL SITO

Per l'applicazione dell'Analisi di Rischio Sanitario (AdR) è necessario "modellizzare" lo scenario reale creando uno schema fisico teorico semplificato mediante la definizione del Modello Concettuale del Sito (MCS). Tale elaborazione comprende essenzialmente la ricostruzione dei caratteri delle tre componenti principali che costituiscono l'AdR:

Sorgente → Trasporto → Bersaglio

per cui devono essere definiti:

- 1) Le sorgenti di contaminazione
- 2) Le vie di migrazione
- 3) I bersagli della contaminazione

Nel prossimo capitolo verranno descritti : il modello concettuale applicato e le assunzioni adottate per l'esecuzione dell'Analisi di rischio sito specifica (Il Livello).

Si precisa che, come previsto dal Criteri Metodologici APAT, poiché i dati disponibili per i diversi parametri sono inferiori a 10, sono stati utilizzati i valori massimi o minimi più conservativi.

10. ANALISI DI RISCHIO DI SECONDO LIVELLO (SITO SPECIFICA)

10.1. SOFTWARE UTILIZZATO

Per l'applicazione dell'analisi di rischio è stato utilizzato il software Risk-Net 2.1 (revisione febbraio 2017), elaborato dal Dipartimento di Ingegneria Civile dell'Università di Roma "Tor Vergata". Tale programma, validato dal Gruppo di Lavoro costituito da membri appartenenti alla Rete Nazionale sulla gestione e la Bonifica dei Siti Contaminati (RECONnet), è in grado di simulare mediante modelli il trasporto degli inquinanti dalle matrici ambientali interessate fino ai recettori secondo i Criteri metodologici APAT.

In allegato si fornisce il file di calcolo relativo allo scenario elaborato con il software Risk-Net 2.1 (in formato xls).

10.2. TIPOLOGIA DI SIMULAZIONE

Mediante l'applicazione della procedura di ANALISI DI RISCHIO ASSOLUTA è stato :

 stimato quantitativamente il rischio per la salute umana connesso ad sito in esame, in termini di valutazione delle conseguenze legate alla sua situazione qualitativa; individuato il valore di concentrazione accettabile (CSR).

I due risultati sono stati ottenuti mediante l'applicazione di tale procedura secondo due distinte modalità:

- La modalità diretta (forward mode);
- La modalità inversa (backward mode).

10.3. MODELLO CONCETTUALE DEL SITO

Si riporta di seguito lo schema di flusso del modello concettuale applicato per l'A.d.R. (v.si fig.4):

Bersaglio **Esposizione** Off-site Sorgente On-Site Contatto Diretto No Off-Site ☐ Ingestione di Suolo e Contatto Dermico ☐ On-Site Inalazione Vapori Outdoo ☐ on-Site C Off-Site (ADF) Volatifizzazione Suolo Superficiale ☐ Inalazione Vapori Indoor Con-Site No Off-Site Erosione vento Con-Site Inalazione Polveri Outdoor Off-Site (ADF) No Off-Site Inalazione Polveri Indoor Con-Site Dilavamento FPOC = 0 FPOC > 0 (DAF) Liscivizzione in Falda Inalazione Vapori Outdoor □ On-Site C Off-Site (ADF) Volatifizzazione Suolo Profondo No Off-Site □ on-Site Inalazione Vapori Indoor Dilavamento FPOC = 0 FOC > 0 (DAF) Lisciviazione in Falda ✓ On-Site ✓ Inalazione Vapori Outdoor ☐ Off-Site (ADF) Volatilizzazione Falda ✓ Inalazione Vapori Indoor ✓ On-Site ☐ Off-Site Diretto FPOC = 0 FOC > 0 (DAF) Contaminazione in Falda

Fig.4

<u>Come sorgente di contaminazione è stata individuata solo la falda poiché non sono stati rilevati superamenti delle CSC nella matrice terreno.</u>

Sono state selezionate le <u>vie di esposizione</u> e le <u>tipologie di bersaglio</u> che potrebbero interessare recettori residenziali presenti on-site (ADULTI e BAMBINI).

La via di esposizione "contaminazione in falda" non è stata selezionata poiché essendo stato considerato l'intero sito come sorgente secondaria, l'analisi di rischio restituisce valori di CSR identici alle CSC.

Per tale aspetto, poiché la sorgente di contaminazione primaria si ritiene ragionevolmente essere esterna al sito, si rimanda alle considerazioni riportate al § 11.

10.4. PARAMETRI CHIMICO-FISICI E TOSSICOLOGICI OGGETTO DELL'ADR

Sono stati selezionati i contaminanti per i quali le analisi hanno evidenziato superamenti delle CSC. Ad ogni sostanza sono stati attribuiti, a livello precauzionale, le massime concentrazioni rilevate.

Falda	
Contaminanti	CRS [mg/L]
Arsenico	1,90E-02
Ferro	2,59E+00
Manganese	7,90E-01
Cloruro di vinile	2,10E-03

I parametri chimico-fisici e tossicologici di riferimento del presente studio sono quelli previsti dalla versione 2.1 del software Risk-net (febbraio 2017), utilizzato per la determinazione dei risultati. Si precisa, come già detto, che tale versione è stata aggiornata inserendo i parametri chimico-fisici e tossicologici riportati nel database ISS-ISPESL (aggiornamento 2015).

Si fa presente che per i parametri "Ferro" e "Manganese" il "Documento di supporto alla Banca dati ISS-INAIL" - rev. 2014 redatto dall'ISS, a pag.11 afferma:

"Gli inquinanti inorganici, quali Alluminio, Argento, Boro, Ferro, Manganese, Nitriti, e Solfati, <u>non</u> <u>sono stati inseriti nella banca dati</u>. Questo perché le Concentrazioni Soglia di Contaminazione (CSC) sono definite solo in corrispondenza al comparto ambientale acqua di falda (Tabella 2 Allegato 5 al Titolo V Parte Quarta del D.Lgs. 152/06 e s.m.i.) e gli stessi non sono volatili. Comunque, per completezza, nelle tabelle 8 e 9 si riportano le corrispondenti proprietà chimico/fisiche e tossicologiche."

Tabella 8 – Proprietà chimico/fisiche per Alluminio, Argento, Boro, Ferro, Manganese, Nitriti, e Solfati

	Numero CAS	Peso Mol. [g/mole]	Solubilità [mg/litro]	Rif.	Volatilità (OMS, 1989)	Punto Ebolliz. [°C]	Rif.	Pressione di vapore [mm Hg]	Rif.	Costante di Henry [adim.]	Rif.	Koc o Kd [ml/g]	Rif.	ABS [adim.]	Rif.	Stato fisico	Rif.
Alluminio	7429-90-5	26,98		1	PM	2237	6					1,50E+03	1	0,01	2	s	2
Argento	7440-22-4	107,87		1	PM	2000	6					f(pH)	Vedi tabella 7	0,01	2	s	2
Boro	7440-42-8	13,84		1	PM	4000	6					3,00E+00	1	0,01	2	s	2
Ferro	7439-89-6	55,85		1	PM	2861	6				l L	2,50E+01	11	0,01	-	5	2
Manganese	7439-96-5	54,94		1	PM	2061	6					6,50E+01	1	0,01	2	s	2
Nitriti	14797-65-0	47,01												0,01	2		2
Solfati	14808-79-8	98.07	1.00E+06	11				5.93E-05	11	3,13E-10	11**			0,01	_	-	2

Tabella 9 – Proprietà tossicologiche per Alluminio, Argento, Boro, Ferro, Manganese, Nitriti, e Solfati

	Numero CAS	Class, UE	Class. IARC	Rif.	SF Ing. [mg/kg- giorno] ⁻¹	Rif.	SF Inal. [mg/kg- giorno] ¹	IUR [µg/m³] ⁻¹	Rif.	RfD Ing. [mg/kg- glorno]	RIf.	RfD Inal. [mg/kg- glorno]	RfC _i [mg/m ³]	Rif.
Alluminio	7429-90-5	Water-react. 2 H261 Pyr.Sol.1 H250								1,00E+00	1	1,43E-03	5,00E-03	1
Argento	7440-22-4									5,00E-03	1			
Boro	7440-42-8									2,00E-01	1	5,71E-03	2,00E-02	1
Ferro	7439-89-6									7,00E-01	1			
Manganese	7439-96-5									1,40E-01	1	1,43E-05	5,00E-05	1
Nitriti	14797-65-0									1,00E-01	1			
Solfati	14808-79-8													

Per i parametri "arsenico, "ferro" e "manganese" sono fissati alcuni valori di RfD ing. e RfD inal. ma a causa della trascurabile (e/o nulla) volatilità, non sono stati inseriti i valori di "Pressione di Vapore" e la "Costante di Henry".

Pertanto per tali contaminanti, il programma Risk-net non ha fornito valori di rischio e le relative CSR poiché la determinazione di tali grandezze risulta "non applicabile" (NA) per la via di esposizione "inalazione vapori".

10.5. CARATTERISTICHE DEL SITO E DELLA SORGENTE

Schematizzazione geologica del sito

Per l'applicazione dell'AdR è necessario schematizzare adeguatamente il terreno secondo una sequenza di strati di materiale omogeneo per litologia/origine, effettuata sulla base delle informazioni geologiche e idrogeologiche dell'area in esame, dei relativi riferimenti bibliografici e storici e dei dati raccolti nel corso delle indagini.

In base alla documentazione fornita dal Geologo Oscar Moretti della SO.RI.P. (v.si allegato 6 – Relazione geologica – ott. 2009, pag. 8), fino alla profondità di 12 m, litologicamente il terreno è rappresentato da sabbia di taglia medio fine con lenti di limi e ghiaietto.

Dai 12 ai 46 metri è presente uno strato a bassa permeabilità costituito da limi argillosi debolmente sabbiosi.

Ancora al di sotto, per circa 3 metri, si trova uno strato permeabile costituito da ghiaie in matrice sabbiosa dove risulta localizzato il vero e proprio acquifero.

Alla base di questo orizzonte stratigrafico, a circa 49 m dal p.c., è presente lo strato impermeabile costituito dalle argille indisturbate.

La porzione di terreno indagato nell'ambito del piano di caratterizzazione ricade all'interno del primo strato (0-12 m) poiché i sondaggi attrezzati a piezometro sono stati realizzati fino alla profondità di ca 9-10 m dal p.c..

In base alla descrizione riportata nella relazione geologica del Dott.Geol.O.Moretti, per l'individuazione dei valori tabellari forniti dal documento APAT "Criteri metodologici per l'applicazione dell'analisi assoluta di rischio ai siti contaminati" ai fini dell'AdR, si è fatto riferimento per la zona insatura alla tessitura Sandy Loam (Sabbia limosa).

In base alle stratigrafie di dettaglio dei n.3 sondaggi realizzati a luglio 2016, riportate in allegato alla Relazione tecnica redatta dalla GEOSOIL (v.si allegato 8), i primi 2 metri costituenti la zona insatura sono interessati in prevalenza da limi argillosi.

Si precisa che applicare la tessitura <u>Sandy loam</u> più aperta rispetto a <u>Clay Loam</u> rappresenta un'ipotesi conservativa ai fini dell'analisi di rischio per il percorso di esposizione volatilizzazione da falda.

Estensione della sorgente di contaminazione secondaria secondo la direzione dominante dei venti

Così come previsto dal § 3.1 del manuale APAT "Criteri metodologici per l'applicazione dell'analisi assoluta di rischio ai siti contaminati" (pag.19 ss) si è fatto riferimento per la definizione dell'Analisi di Rischio alla sorgente di contaminazione secondaria rappresentata, nel caso in esame, dalle acque di falda.

Trattandosi di una matrice dotata di mobilità e di un sito di ridotte dimensione, per la definizione delle dimensioni della sorgente si è considerato a livello precauzionale l'intero sito senza operare alcuna parzializzazione in base ai risultati ottenuti per i tre sondaggi.

Direzioni dei venti

Si riportano in tabella seguente (Tab.15) i dati registrati dalla centralina meteorologica più vicina, ubicata in via Marconi – Pescara, nel periodo di osservazione tra gennaio 2013 e febbraio 2017 dalle ore 7.00 alle ore 19:00.

Tab. 3 - Statistiche dati rilevati dalla centralina meteorologica ubicata presso Viale Marconi (PESCARA)¹

Mese dell'anno	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Media Anno
Mese dell'allilo	01	02	03	04	05	06	07	08	09	10	11	12	1-12
Direzione dominante del vento	~	~	~	~	-	-	1	-	~	~	~	~	~
	wsw	wsw	wsw	WSW	se	se	se	se	wsw	wsw	wsw	wsw	wsw
Probabilita'del vento > = 4 Beaufort (%)	3	2	5	3	4	3	2	3	2	2	2	2	2
Velocità media del vento (Knots)	3	3	4	4	4	4	4	4	3	3	2	2	3
Temperatura dell'aria media (°C)	9	11	13	17	20	25	28	27	23	19	15	10	18

¹ Fonte: sito www.windfinder.com

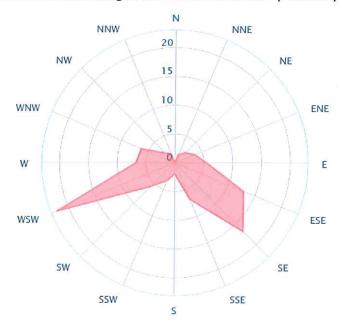


Fig. 5 - Rosa dei venti con distribuzione della direzione dei venti dominanti rilevati dalla centralina meteorologica ubicata in via Marconi (PESCARA)

La direzione dominante dei venti risulta essere quella di WSW.

In figura 6 si riporta l'estensione della contaminazione per il <u>suolo saturo</u> (considerando l'intero sito) individuata lungo la direzione WSW relativa alla direzione dominante del vento.

Fig.6

<u>Ulteriori parametri utilizzati</u>

Sono stati inseriti i seguenti dati richiesti dal software in base al modello concettuale predisposto.

			ZONA INSA	TURA		
	Parametro	U.M.	Default ISPRA	Default ASTM	<u>Valore</u> <u>assunto</u>	NOTE
L _{GW}	Profondità del piano di falda	m	3	3	1,55	Per la volatilizzazione da falda il valore più conservativo è il minimo
рН	рН	adim.	6,8	6,8	6,8	Per i metalli il valore più conservativo è il minimo. (anche applicando il massimo la CSR non varia)
ρς	Densità del suolo	g/cm³	1,7	1,7	1,9	Valore estrapolato dalla relazione geologica a firma del dott. Oscar Moretti (ott 2009)

		Αľ	MBIENTE OL	JTDOOR		
	Parametro	U.M.	Default ISPRA	Default ASTM	<u>Valore</u> <u>assunto</u>	NOTE
δ_{air}	Altezza della zona di miscelazione	m	2	2	2	Secondo ipotesi conservative, si è assunto δair = 200 cm, equivalente all'altezza, approssimata per eccesso, di un individuo adulto
w'	Estensione della sorgente nella direzione principale del vento	m	45	45	41,5	v.si <i>fig.6</i> . Si ritiene utile evidenziare che pur aumentando tale valore a 50 m le CSR on variano.
U _{air}	Velocità del vento	m/s	2,25		1,4	Vedi paragrafo seguente. E' stato assunto un valore più conservativo rispetto al dato di default.
T outdoor	Tempo medio di durata del flusso di vapore	anni	30	30	30	Durata di esposizione (ED) ambito Residenziale/Ricreativo per suolo profondo/falda (sostanze non cancerogene)

		AMBIENT	E INDOOR –	Edificio on	-site	
	Parametro	U.M.	Default ISPRA	Default ASTM	<u>Valore</u> <u>assunto</u>	NOTE
L _{crack}	Spessore delle fondazioni/muri	m	0,15	0,15	0,15	Dato fornito dal progettista coincidente con il dato di default
Z_{crack}	Profondità fondazioni da p.c.	m	0,15	0,15	0,15	Per edifici fuori terra, come in questo caso, Z _{crack} = L _{crack}
η	Frazione areale di fratture indoor	adim.	0,01	0,01	0,01	Assunto valore di default
L _b	Rapporto tra volume indoor ed area di infiltrazione	m	2	2	8,5	Per edifici fuori terra, come in questo caso, tale valore coincide con l'altezza del fabbricato. Essendo costituito da tre piani è stato assunta un'altezza di 8,5 m

		AMBIENT	E INDOOR -	Edificio on	-site	
	Parametro	U.M.	Default ISPRA	Default ASTM	<u>Valore</u> assunto	NOTE
θ_{wcrack}	Contenuto volumetrico di acqua nelle fratture	adim.	0,12	0,12	0,12	Assunto valore di default
θ_{acrack}	Contenuto volumetrico di aria nelle fratture	adim.	0,26	0,26	0,26	Assunto valore di default
ER	Tasso di ricambio di aria indoor	1/s	1,40E-04	1,40E-04	1,40E- 04	Assunto valore di default
T outdoor	Tempo medio di durata del flusso di vapore	anni	30	30	30	Durata di esposizione (ED) ambito Residenziale/Ricreativo per suolo profondo/falda (sostanze non cancerogene)

Velocità del vento

In merito alla definizione del valore di velocità del vento si è preso a riferimento il dato medio (3,7 m/s) calcolato in base alla serie storica dei dati (1961-1990) rilevati dalla centralina meteorologica dell'Aeroporto Internazione d'Abruzzo (v.si tab. 4)

Tab.4

PESCARA AEROPORTO	Mesi												Stagioni				A 14 14 2
(1961-1990)	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	inv	Pri	Est	Aut	Anno
Vento (direzione-m/s)	SW 4,1	SW 4,2	SW 4,1	SW 3,9	NE 3,5	NE 3,4		NE 3,3			SW 3,5	SW 3,8	4	3,8	3,4	3,4	3,7

Come previsto dal manuale APAT, per stimare il valore di velocità alla quota di 2 m, in corrispondenza della zona di miscelazione, si è applicata la seguente relazione empirica [S.R. Hanna et al., 1982]:

$$\frac{U_{air}(z_1)}{U_{air}(z_2)} = \left(\frac{z_1}{z_2}\right)^p$$

dove "p" è funzione della classe di stabilità atmosferica e della rugosità del suolo. In tabella seguente si riportano i valori di "p" per due tipi di rugosità (area urbana e rurale) e per le sei classi di stabilita atmosferica, secondo la classificazione di Pasquill-Gifford.

Tab.5

р	Α	В	С	D	E	F
Suolo urbano	0,15	0,15	0,20	0,25	0,40	0,60
Suolo rurale	0,07	0,07	0,10	0,15	0,35	0,55

Come previsto sempre dal manuale APAT, si è scelto di calcolare la velocità del vento facendo riferimento alle categorie di stabilità D e F in quanto ritenute rappresentative rispettivamente della condizione più probabile e della più conservativa.

La velocità è stata determinata per le due condizioni di stabilità mediante la maschera di calcolo fornita da Risk- net ed è stato preso come riferimento il valore minimo in quanto più conservativo ai fini dell'applicazione dell'AdR (classe di stabilità F => velocità del vento = 1,4 m/s).

10.6. RIEPILOGO DATI DI IMPUT

Tab. 6 - Caratteristiche Sito

Simbolo	Parametro	Unità di misura	Valore	Note
Zona In	satura	misura		
L _{s (SS)}	Profondità del top della sorgente nel suolo superficiale rispetto al	m	NIA	
	p.c.		NA	Non Richiesto
L _{s (SP)} d	Profondità del top della sorgente nel suolo profondo rispetto al p.c.	m	NA	Non Richiesto
d _s	Spessore della sorgente nel suolo superficiale (insaturo)	m	NA	Non Richiesto
	Spessore della sorgente nel suolo profondo (insaturo)	m	NA 1 EE	Non Richiesto
L _{GW}	Profondità del piano di falda	m 	1,55	Modificato
h _v €	Spessore della zona insatura	m - <i>C/-</i>	1,3	Modificato
f _{oc, SS}	Frazione di carbonio organico nel suolo insaturo superficiale	g-C/g-suolo	NA	Non Richiesto
f _{oc, SP}	Frazione di carbonio organico nel suolo insaturo profondo	g-C/g-suolo	NA	Non Richiesto
t _{LF}	Tempo medio di durata del lisciviato	anni	NA	Non Richiesto
pН	рН	adim.	6,8	Default
ρ_s	Densità del suolo	g/cm³	1,9	Modificato
$\theta_{\rm e}$	Porosità efficace del terreno in zona insatura	adim.	0,345	Modificato
θ_{w}	Contenuto volumetrico di acqua	adim.	0,194	Modificato
θ_{a}	Contenuto volumetrico di aria	adim.	0,151	Modificato
θ_{wcap}	Contenuto volumetrico di acqua nelle frangia capillare	adim.	0,288	Modificato
θ_{acap}	Contenuto volumetrico di aria nelle frangia capillare	adim.	0,057	Modificato
h_{cap}	Spessore frangia capillare	m	0,25	Modificato
l _{ef}	Infiltrazione efficace	cm/anno	NA	Non Richiesto
Р	Piovosità	cm/anno	NA	Non Richiesto
η _{outdoor}	Frazione areale di fratture outdoor	adim.	NA	Non Richiesto
Simbolo	Parametro	Unità di misura	Valore	Note
Zona Sa	tura			
W	Estensione della sorgente nella direzione del flusso di falda	m	NA	Non Richiesto
S_w	Estensione della sorgente nella direzione ortogonale al flusso di falda	m	NA	Non Richiesto
d_a	Spessore acquifero	m	NA	Non Richiesto
K_{sat}		44.14	NIA	Non Richiesto
Sat	Conducibilità idraulica del terreno saturo	m/s	NA	MOU MICHIESTO
i	Conducibilità idraulica del terreno saturo Gradiente idraulico	adim.	NA NA	Non Richiesto
i		3444050000		Non Richiesto
7/27	Gradiente idraulico	adim.	NA	
i V _{gw}	Gradiente idraulico Velocità di Darcy	adim. m/s	NA NA	Non Richiesto Non Richiesto
i v _{gw} v _e	Gradiente idraulico Velocità di Darcy Velocità media effettiva nella falda	adim. m/s m/s	NA NA NA	Non Richiesto Non Richiesto Non Richiesto
i $\begin{matrix} v_{gw} \\ v_{e} \\ \theta_{e \; sat} \end{matrix}$	Gradiente idraulico Velocità di Darcy Velocità media effettiva nella falda Porosità efficace del terreno in zona satura	adim. m/s m/s adim.	NA NA NA	Non Richiesto Non Richiesto Non Richiesto Non Richiesto
$\begin{aligned} & i \\ & v_{gw} \\ & v_e \\ & \theta_{e \; sat} \\ & f_{oc} \end{aligned}$	Gradiente idraulico Velocità di Darcy Velocità media effettiva nella falda Porosità efficace del terreno in zona satura Frazione di carbonio organico nel suolo saturo	adim. m/s m/s adim. g-C/g-suolo	NA NA NA NA	Non Richiesto Non Richiesto Non Richiesto Non Richiesto Non Richiesto
$\begin{aligned} & \text{i} \\ & \text{v}_{\text{gw}} \\ & \text{v}_{\text{e}} \\ & \theta_{\text{e sat}} \\ & f_{\text{oc}} \\ & \text{POC} \end{aligned}$	Gradiente idraulico Velocità di Darcy Velocità media effettiva nella falda Porosità efficace del terreno in zona satura Frazione di carbonio organico nel suolo saturo Distanza recettore off site (DAF)	adim. m/s m/s adim. g-C/g-suolo m	NA NA NA NA NA	Non Richiesto Non Richiesto Non Richiesto Non Richiesto Non Richiesto Non Richiesto
$\label{eq:vgw} \begin{split} & i \\ & v_{gw} \\ & v_{e} \\ & \theta_{e sat} \\ & f_{oc} \\ & POC \\ & a_{x} \end{split}$	Gradiente idraulico Velocità di Darcy Velocità media effettiva nella falda Porosità efficace del terreno in zona satura Frazione di carbonio organico nel suolo saturo Distanza recettore off site (DAF) Dispersività longitudinale	adim. m/s m/s adim. g-C/g-suolo m	NA NA NA NA NA	Non Richiesto
$\label{eq:vgw} \begin{split} & i \\ & v_{gw} \\ & v_{e} \\ & \theta_{e sat} \\ & f_{oc} \\ & POC \\ & a_{x} \\ & a_{y} \end{split}$	Gradiente idraulico Velocità di Darcy Velocità media effettiva nella falda Porosità efficace del terreno in zona satura Frazione di carbonio organico nel suolo saturo Distanza recettore off site (DAF) Dispersività longitudinale Dispersività trasversale	adim. m/s m/s adim. g-C/g-suolo m m	NA NA NA NA NA NA	Non Richiesto

Simbolo	Parametro	Unità di misura	Valore	Note
Ambien	te Outdoor			
δ_{air}	Altezza della zona di miscelazione	m	2	Default
w'	Estensione della sorgente nella direzione principale del vento	m	41,5	Modificato
S _w '	Estensione della sorgente nella direzione ortogonale a quella del vento	m	NA	Non Richiesto
U _{air}	Velocità del vento	m/s	1,41E+00	Modificato
P _e	Portata di particolato per unità di superficie	g/(cm·s²)	NA	Non Richiesto
τ _{outdoor}	Tempo medio di durata del flusso di vapore	anni	30	Default
POC		m		
ADF	Distanza recettore off site (ADF)	m	NA	Non Richiesto
σ_{y}	Coefficiente di dispersione trasversale	m	NA	Non Richiesto
σ_{z}	Coefficiente di dispersione verticale	m	NA	Non Richiesto

imbolo	Parametro	Unità di misura	Valore	Note
Ambien	te Indoor			
Edificio Or	n-Site			
$\mathbf{Z}_{\text{crack}}$	Profondità fondazioni da p.c.	m	0,15	Default
L _{crack}	Spessore delle fondazioni/muri	m	0,15	Default
η	Frazione areale di fratture indoor	adim.	0,01	Default
L_{b}	Rapporto tra volume indoor ed area di infiltrazione	m	8,5	Modificato
θ_{wcrack}	Contenuto volumetrico di acqua nelle fratture	adim.	0,12	Default
θ_{acrack}	Contenuto volumetrico di aria nelle fratture	adim.	0,26	Default
ER	Tasso di ricambio di aria indoor	1/s	0,00014	Default
τ_{indoor}	Tempo medio di durata del flusso di vapore	anni	30	Default
Δр	Differenza di pressione tra indoor e outdoor	g/(cm·s²)	NA	Non Richiesto
K_{ν}	Permeabilità del suolo al flusso di vapore	m²	NA	Non Richiesto
A_b	Superficie totale coinvolta nell'infiltrazione	m²	NA	Non Richiesto
\mathbf{X}_{crack}	Perimetro delle fondazioni/muri	m	NA	Non Richiesto
μ_{air}	Viscosità del vapore	g/(cm·s)	NA	Non Richiesto
Edificio Of	f-Site			
Z_{crack}	Profondità fondazioni da p.c.	m	NA	Non Richiesto
L_{crack}	Spessore delle fondazioni/muri	m	NA	Non Richiesto
η	Frazione areale di fratture	adim.	NA	Non Richiesto
L_b	Rapporto tra volume indoor ed area di infiltrazione	m	NA	Non Richiesto
θ_{wcrack}	Contenuto volumetrico di acqua nelle fratture	adim.	NA	Non Richiesto
θ_{acrack}	Contenuto volumetrico di aria nelle fratture	adim.	NA	Non Richiesto
ER	Tasso di ricambio di aria indoor	1/ s	NA	Non Richiesto
τ_{indoor}	Tempo medio di durata del flusso di vapore	anni	NA	Non Richiesto
Δр	Differenza di pressione tra indoor e outdoor	g/(cm·s²)	NA	Non Richiesto
K_v	Permeabilità del suolo al flusso di vapore	m²	NA	Non Richiesto
A_b	Superficie totale coinvolta nell'infiltrazione	m ²	NA	Non Richiesto
\mathbf{X}_{crack}	Perimetro delle fondazioni/muri	m	NA	Non Richiesto
μ_{air}	Viscosità del vapore	g/(cm·s)	NA	Non Richiesto

Tab.7 - Accettabilità

Target	Individuale	Cumulativo
Rischio	1E-6	1E-5
Indice di pericolo	1	1

Modello Concettuale

Vie di esposizione	On-Site	Off-Site
Suolo Superficiale		
Ingestione Suolo		NA
Contatto Dermico		NA
Inalazione Vapori Outdoor		
Inalazione Polveri Outdoor		
Inalazione Vapori Indoor		NA
Inalazione Polveri Indoor		NA
Lisciviazione In Falda		
Suolo Profondo		
Lisciviazione in Falda		
Inalazione Vapori Outdoor		
Inalazione Vapori Indoor		NA
Falda		
ngestione d'acqua / Risorsa Idrica		
nalazione Vapori Outdoor	V	
nalazione Vapori Indoor	V	

Tab.8 - Recettori / Ambito

Recettori	Res - Adjusted	NA
Recettore	Res - Adjusted	NA
Bersaglio Falda	NA	NA

Opzioni di Calcolo	Suolo Superficiale	Suolo Profondo
Volatilizzazione, Esaurimento sorgente	NA	NA
VFsamb per suolo superficiale se sorgente più profonda di p.c.	NA	NA
Utilizza minore tra VFsamb e Vfss		NA
Lisciviazione, Esaurimento sorgente	NA	NA
Soil Attenuation Model (SAM)	NA	NA
Altre Opzioni di Calcolo		
Dispersione in Falda	N.	A
onsidera Csat per calcolo Rischio (modalità forward)	V	
Considera Csat per calcolo CSR (modalità backward)	No)

ab.9 - Parametri di Esposizione On-site		Residenziale		Industrial
Simbolo	Unità di misura	Adulto	Bambino	Adulto
ON-SITE				
Fattori comuni				
Peso corporeo	kg	70	15	NA
Tempo medio di esposizione sost.carcerogene	anni	70		
Tempo medio di esposizione sost.non carcerogene	anni	24	6	NA
Frequenza di esposizione	giorni/anno	350	350	NA
Ingestione di suolo				
Frazione di suolo ingerita	adim	NA	NA	NA
Tasso di ingestione di suolo	mg/giorno	NA	NA	NA
Contatto dermico con suolo				
Superficie di pelle esposta	cm²	NA	NA	NA
Fattore di aderenza dermica del suolo	mg/cm²/giorno	NA	NA	NA
Inalazione di aria outdoor				
Frequenza giornaliera di esposizione outdoor	ore/giorno	24	24	NA
Inalazione outdoor	m³/ora	0,9	0,7	NA
Frazione di particelle di suolo nella polvere	adim	1		_
Inalazione di aria Indoor				
Frequenza giornaliera di esposizione indoor	ore/giorno	24	24	NA
Inalazione indoor	m³/ora	0,9	0,7	NA
Frazione indoor di polvere all'aperto	adim	1		
Ingestione di acqua potabile				
Tasso di ingestione di acqua	L/giorno	NA	NA	NA

Tab.10 - Parametri di Esposizione Off-site		Residenziale		Industrial
Simbolo	Unità di misura	Adulto	Bambino	Adulto
OFF-SITE				
Fattori comuni				
Peso corporeo	kg	NA	NA	NA
Tempo medio di esposizione sost.carcerogene	anni	NA	NA	NA
Tempo medio di esposizione sost.non carcerogene	anni	NA	NA	NA
Frequenza di esposizione	giorni/anno	NA	NA	NA
Inalazione di aria outdoor				
Frequenza giornaliera di esposizione outdoor	ore/giorno	NA	NA	NA
Inalazione outdoor	m³/ora	NA	NA	NA
Frazione di particelle di suolo nella polvere	adim	NA	NA	NA
Inalazione di aria Indoor				
Frequenza giornaliera di esposizione indoor	ore/giorno	NA	NA	NA
Inalazione indoor	m³/ora	NA	NA	NA
Frazione indoor di polvere all'aperto	adim		NA	
Ingestione di acqua potabile				
Tasso di ingestione di acqua	L/giorno	NA	NA	NA

10.7. RISULTATI ANALISI DI RISCHIO

Tab. 11 - CALCOLO DEL RISCHIO - FALDA

Contaminanti	CRS [mg/L]	CRS soil-gas [mg/m³]	Fatt. di s Correzione (f) i] [adim]	CRS ridotta falda [mg/L]	CRS ridotta soil-gas [mg/m³]	Rischio Cancerogeno (R)	Indice di Pericolo (HI)	Rischio risorsa idrica (RGW)	CSC D.Lgs 152/06 [mg/L]	Solubilità [mg/L]	C.A.S. Number
Arsenico	1,90E-02			1,90E-02	ı	I		AN	1,00E-02		7440-38-2
Ferro	2,59E+00	1		2,59E+00		-	1	NA	2,00E-01		7439-89-6
Manganese	7,90E-01	I		7,90E-01	1	1	1	NA	5,00E-02		7439-96-5
Cloruro di vinile	2,10E-03	1		2,10E-03	1	1,49E-07	1,28E-03	AN	5,00E-04	8,80E+03	75-01-4

R tot HI tot	3,40E-09 2,90E-05	1,49E-07 1,28E-03	R tot HI tot		
On-site	Outdoor	Indoor	Off-site	Outdoor	Indoor

75-01-4 Cloruro di vinile C.A.S.

	CRS	CRS Soil-Gas
Concentrazioni in sorgente	(mg/L)	(mg/m³)
	2,10E-03	-

Falda

mg/L		mg/L	
5,00E-04		8,80E+03	1,14E+00
CSC Falda	Proprietà Contaminante	Solubilità	Costante di Henry

Limiti Tabellari

(mg/m₃)/(mg/L) (mg/m₃)/(mg/L)

3,68E-04 1,62E-02

Fattori di

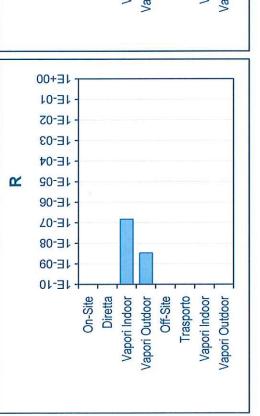
R risorsa idrica

Indice di Pericolo 1,28E-03

1,49E-07 Rischio

Rischio e Indice di Pericolo Max

AN


(mg/L)/(mg/L)

AN

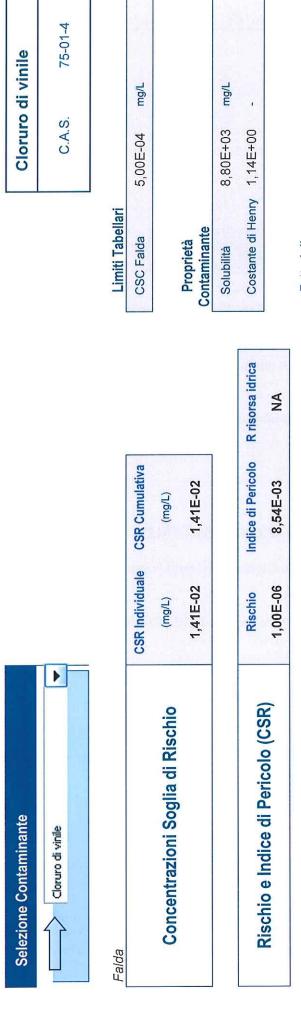
cm²/sec cm²/sec cm²/sec cm²/sec

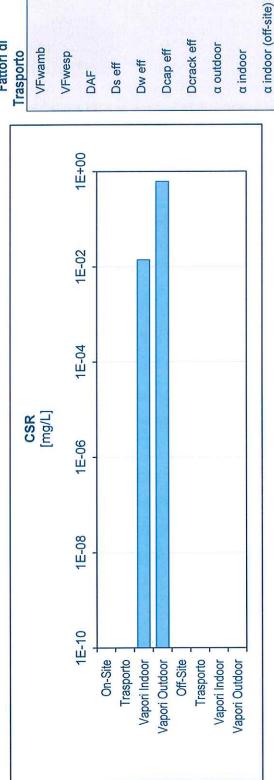
1,66E-03 3,39E-04 6,61E-05 8,35E-03

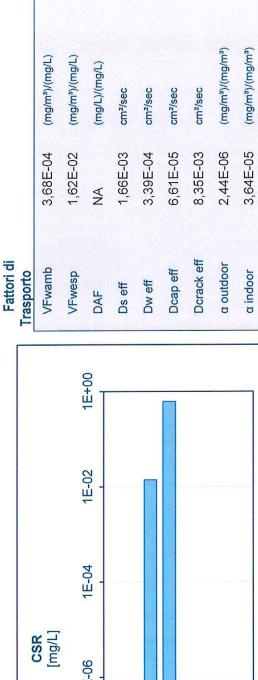
Trasporto	VFwamb	VFwesp	L	UAT	Ds eff	Dw eff	Ho usu	Cap	Dcrack eff	a outdoor	a indoor	a indoor (off-site)
		00+3	31 -									
120		10-3	31 -									
HI Raw		Z0-E	3L -									
_	•	£0-E	3L -									
		 †0-∃] -	d)	ı a			0)				
				On-Site	Diretta	Vapori Indoor	Vapori Outdoor	Off-Site	Trasporto	Vapori Indoor	Vapori Outdoor	
		00+3]l -								_	
		10-3										
		20-										

(mg/m₃)/(mg/m₃)

M


(mg/m₃)/(mg/m₃) (mg/m₃)/(mg/m₃)


3,64E-05 2,44E-06


Tab. 12 - CALCOLO DELLE CSR - FALDA

Contaminanti	CSR individuale [mg/L]	Fatt. di Correzione (f) [adim]	CSR falda [mg/L]	Rischio Cancerogeno (R)	Indice di Pericolo (HI)	Rischio risorsa idrica (RGW)	CSC D.Lgs 152/06 [mg/L]	Solubilità [mg/L]	CRS in sorgente [mg/L]
Arsenico	NA		NA		1		1,00E-02		1,90E-02
Ferro	AN		NA	-	1	1	2,00E-01		2,59E+00
Manganese	NA		NA	-	1	1	5,00E-02		7,90E-01
Cloruro di vinile	1,41E-02		1,41E-02	1,00E-06	8,54E-03	AN	5,00E-04	8,80E+03	2,10E-03

On-site	R tot	HI tot
Outdoor	2,27E-08	1,94E-04
Indoor	1,00E-06	8,54E-03
Off-site	R tot	HI tot
Outdoor	1	ı

(mg/m3)/(mg/m3)

AA

10.8. ESITI ANALISI DI RISCHIO

I risultati dell'A.d.R. mostrano un rischio e un indice di pericolo accettabile con R < 1 ·10⁻⁵ e HI_{tot} < 1.

Tab.13

On-site	R tot	HI tot
Outdoor	3,40E-09	2,90E-05
Indoor	1,49E-07	1,28E-03

Per quanto sopra, ovvero, in base a tale simulazione, il sito risulta non contaminato.

Il valore della CSR calcolato per il cloruro di vinile è infatti pari a **14,1** μ g/litro superiore a 2,1 μ g/litro riscontrati da ARTA nel piezometro **S2.**

Per gli altri contaminanti (Arsenico, Ferro e Manganese) come già detto al § 10.4, non essendo volatili non vi è rischio di inalazione.

11. ORIGINE ESTERNA NELLA CONTAMINAZIONE DELLA FALDA

In merito alle acque sotterrane si ricorda che il sito è lambito dal noto Fosso Bardet, la cui tenuta alle varie condizioni di riempimento, non sono garantite.

Il geom. Picciano dell'ACA Spa, nella conferenza dei servizi del 17.02.2017 (v.si allegato 1) ha infatti dichiarato che:

" al margine nord del lotto in esame, al di sotto del marciapiede sud di via Andrea Doria (lungofiume) è posta una condotta di acque nere [...omissis...].

Al margine est del lotto è invece posto il grosso scatolare di acque miste in c.a. del c.d. Fosso Bardet, in merito al quale non può escludere a priori perdite e tracimazioni in caso di fenomeni atmosferici straordinari."

Tale canale inoltre è in diretta comunicazione idraulica con il fiume Pescara, pertanto il regime idrico sotterraneo del sito risulta fortemente influenzato da tali fonti esterne che presentano caratteristiche intrinseche di variabilità qualitativa e quantitativa.

Come già riportato nel piano di caratterizzazione, non si esclude che da tale fosso si possano creare fenomeni di diffusione sia di reflui civili che di acque fluviali (v.si fig. 7). Quest'ultima possibilità si può

determinare allorquando, durante eventi di piena, l'innalzamento del livello idraulico del fiume supera quello del fosso Bardet con il quale è in comunicazione, generando un'inversione di flusso.

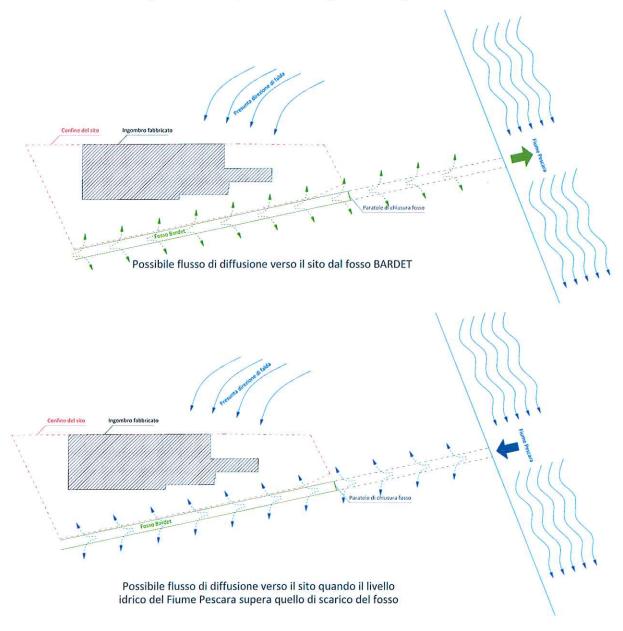


Fig.7 – Possibili fenomeni di diffusione del fosso Bardet

In considerazione delle attività svolte in passato sul sito, della ridotta dimensione dello stesso e dalla non contaminazione della matrice terreno si ritiene, adottando il criterio della ragionevolezza, di poter affermare che l'origine della presenza di contaminanti provenga dall'esterno. In particolare, per i parametri "ferro" e "manganese", è frequente riscontrare diffusamente, nelle acque sotterranee della piana del Fiume Pescara, concentrazioni superiori alle CSC derivanti da caratteristiche anche litologiche ed antropiche, su aree anche vaste.

La presenza di "Arsenico" oltre la CSC riscontrata nel punto S1 solo da ARTA lascia presumere un'origine esterna poiché:

- il sondaggio è stato effettuato sul confine ovest del sito quindi su monte idrogeologico;
- la concentrazione di Arsenico nella acque sotterranee riscontrate nei piezometri tende a diminuire man mano che ci si allontana dal fiume Pescara.

L'origine della presenza di Arsenico può essere ricondotta alle acque del Fiume Pescara che nell'ultimo tratto, prima dell'immissione in mare, sono notoriamente, di pessima qualità. Si aggiunge che notizie di cronaca locale hanno segnalato, così come riscontrato dai tecnici ARTA, scarichi nel fiume con alti valori di Arsenico e presenze di tale inquinante rilevabili nelle stesse acque fluviali.

Infine anche la presenza di "cloruro di vinile", riscontrata oltre la CSC nel punto S2 da ARTA, si ritiene essere di origine esterna poiché non riconducibile ad attività pregresse svolte sul sito.

La falda al di sotto del sito non può pertanto essere considerata fonte di contaminazione per le acque sotterranee poiché i contributi di sostanze contaminanti, per quanto illustrato, giungono dall'esterno.

Lo stesso dott. R. Cocco, Dirigente dell'ARTA Distretto di Chieti, in sede di conferenza dei servizi del 17.02.2017 (si riporta testualmente dal verbale):

"ritiene plausibile che la contaminazione residua in capo alle acque sotterranee possa derivare dall'esterno poiché il sito è posto al crocevia della linea acque nere di via A.Doria, della acqua grigie del Fosso Bardet e prossimo al Fiume. La falda, come già evidenziato in sede di precedente CdS, in zona è estremamente piatta, pertanto periodicamente può risultare alimentata dal fiume."

12. CONCLUSIONI

Avendo l'Analisi di Rischio dimostrato che la concentrazione dei contaminanti presenti nel sito è inferiore alle concentrazioni soglia di rischio per i recettori umani, si chiede <u>la conclusione del procedimento in art.242 del D.Lgs. 152/06 e s.m.i e la cancellazione dall'anagrafe regionale dei siti a rischio potenziale di inquinamento</u>.

13. ELENCO ALLEGATI

N.	Allegati
1	Verbale conferenza dei servizi del 17.02.2017
2	Stralcio I.G.M.
3	Stralcio di mappa catastale
4	Stralcio P.R.G.
5	Planimetria del sito
6	Relazione geologica del Geologo Dott. O.Moretti – ottobre 2009
7	Relazione Modello Idrogeologico del Geologo Dott. O.Moretti – giugno 2015
8	Relazione tecnica indagini geognostiche – GEOSOIL – luglio 2016
9	RP Laboratorio LACI srl
10	RP Laboratorio ARTA Distretto di Pescara
22	File di calcolo elaborato con il software Risknet 2.1